A smart city provides a new idea and model for urban construction, management, and development. This article proposes the concepts and methodology for top-level design of smart cities based on the " Integration of Fo...A smart city provides a new idea and model for urban construction, management, and development. This article proposes the concepts and methodology for top-level design of smart cities based on the " Integration of Four Plans ", and the planning process and systems for implementing the top-level design of smart cities. This article discusses, from the perspective of a city, how to optimize resource allocation, coordinate the development of urban economy, society, resources, environment, and people's livelihood, and map out the blueprints for healthy and sustainable development of a smart city.展开更多
We have developed a web-based processing system that can simulate positive and negative sea level changes globally by selecting the best Digital Elevation Model (DEM) for a target region from multiple DEMs. A PNG elev...We have developed a web-based processing system that can simulate positive and negative sea level changes globally by selecting the best Digital Elevation Model (DEM) for a target region from multiple DEMs. A PNG elevation tile format is used as the DEM format, which reduces the DEM data size. The PNG tile format implements client-based processing, and the DEM data are provided from different websites. In addition, the smart tile architecture is adopted, which enables on-demand simulation by adding a tile conversion process (<em>i.e.</em>, a DEM selection process) during image drawing by using JavaScript. To demonstrate the system, we have employed three DEMs,<em> i.e.</em>, the Geospatial Information Authority of Japan (GSI) map (~10-m resolution), the ASTER Global Digital Elevation Models (ASTER GDEM version 3) as global land area (~30-m resolution), and the General Bathymetric Chart of the Oceans as bathymetric data (~1000-m resolution). The ASTER Global Water Bodies Database is also used in the data selection process. The GSI provides their DEM in a PNG elevation tile format, and the other data are provided by the Geological Survey of Japan in PNG elevation tile format. We assume the current DEM sea level as 0 m, and the sea level can be changed to an arbitrary integer value (<span style="white-space:nowrap;">−</span>10,000 to 10,000 m). Combining ASTER GDEM for land and GEBCO for sea makes it possible to target DEM of the whole earth. Moreover, it was shown that if a higher resolution DEM is available, it is possible to combine the higher resolution DEM in that area. The combining the PNG elevation tile format with the smart tile architecture demonstrates the possibilities of a client-based web processing service like that of the server-based OGC Web Processing Service.展开更多
文摘A smart city provides a new idea and model for urban construction, management, and development. This article proposes the concepts and methodology for top-level design of smart cities based on the " Integration of Four Plans ", and the planning process and systems for implementing the top-level design of smart cities. This article discusses, from the perspective of a city, how to optimize resource allocation, coordinate the development of urban economy, society, resources, environment, and people's livelihood, and map out the blueprints for healthy and sustainable development of a smart city.
文摘We have developed a web-based processing system that can simulate positive and negative sea level changes globally by selecting the best Digital Elevation Model (DEM) for a target region from multiple DEMs. A PNG elevation tile format is used as the DEM format, which reduces the DEM data size. The PNG tile format implements client-based processing, and the DEM data are provided from different websites. In addition, the smart tile architecture is adopted, which enables on-demand simulation by adding a tile conversion process (<em>i.e.</em>, a DEM selection process) during image drawing by using JavaScript. To demonstrate the system, we have employed three DEMs,<em> i.e.</em>, the Geospatial Information Authority of Japan (GSI) map (~10-m resolution), the ASTER Global Digital Elevation Models (ASTER GDEM version 3) as global land area (~30-m resolution), and the General Bathymetric Chart of the Oceans as bathymetric data (~1000-m resolution). The ASTER Global Water Bodies Database is also used in the data selection process. The GSI provides their DEM in a PNG elevation tile format, and the other data are provided by the Geological Survey of Japan in PNG elevation tile format. We assume the current DEM sea level as 0 m, and the sea level can be changed to an arbitrary integer value (<span style="white-space:nowrap;">−</span>10,000 to 10,000 m). Combining ASTER GDEM for land and GEBCO for sea makes it possible to target DEM of the whole earth. Moreover, it was shown that if a higher resolution DEM is available, it is possible to combine the higher resolution DEM in that area. The combining the PNG elevation tile format with the smart tile architecture demonstrates the possibilities of a client-based web processing service like that of the server-based OGC Web Processing Service.