In order to ensure the testing range and long-term reliability of the fiber Bragg grating (FBG) used for the smart cable, a smart cable embedded with FBG strain sensors based on the desensitized encapsulation struct...In order to ensure the testing range and long-term reliability of the fiber Bragg grating (FBG) used for the smart cable, a smart cable embedded with FBG strain sensors based on the desensitized encapsulation structure was designed. For a smart cable specimen, the fatigue loading experiments with the cycle from 100 thousands to 2 million and 0.95 times nominal breaking cable force (Pb) were carried out, which tested the long-serving effects of the smart cable. The test results of the static tension loading and unloading during the stepwise fatigue cycle process showed that the encapsulated FBG strain sensors had the good linearity and repeatability. Also all sensors survived after 2 million times fatigue cycle. 0.95Pb static tension test showed that the encapsulated FBG strain sensors embedded inside the cable reached 4.5% testing accuracy in the 0.86Pb working range. After 0.95Pb static tension test, the dissection test was carried out by breaking the force tension. The results showed that the appearances of the encapsulated sensors were good, and the design structures were not changed and damaged.展开更多
The smart cable with embedded distributed fiber optical Bragg grating (FBG) sensors was chosen as the object to study a new diagnosis method about broken wires of the bridge cable. The diagnosis strategy based on ca...The smart cable with embedded distributed fiber optical Bragg grating (FBG) sensors was chosen as the object to study a new diagnosis method about broken wires of the bridge cable. The diagnosis strategy based on cable force and stress distribution state of steel wires was put forward. By establishing the bridge-cable and cable-steel wires model, the broken wires sample database was simulated numerically. A method of the characterization cable state pattern which can both represent the degree and location of broken wires inside a cable was put forward. The training and predicting results of the sample database by the back propagation (BP) neural network showed that the proposed broken wires diagnosis method was feasible and expanded the broken wires diagnosis research area by using the smart cable which was used to be only representing cable force.展开更多
Carbon fiber reinforced polymer(CFRP)can be applied for bridge cables due to its excellent properties.As the important load-bearing structural component,real-time force monitoring of the CFRP cable is required.This pa...Carbon fiber reinforced polymer(CFRP)can be applied for bridge cables due to its excellent properties.As the important load-bearing structural component,real-time force monitoring of the CFRP cable is required.This paper presents a new smart CFRP cable that combines the self-sensing rods with embedded sensors and the anchorage system using extrusion technology.By embedding optical fiber(OF)and coaxial cable Fabry-Perot interferometer(CCFPI)into CFRP rods respectively,two types of self-sensing rods(CFRP-OF rod and CFRP-CCFPI rod)were fabricated.A new anchorage unit using an extrusion process was proposed as a basic component of smart CFRP cables.Anchorage units holding a CFRP-OF rod and a CFRP-CCFPI rod were tested to obtain their sensing and mechanical properties.Three ancho-rage units were assembled to form a smart CFRP cable with self-sensing functionality.A verification test was carried out to confirm the capabil-ity of monitoring the cable force.The test results demonstrate that the smart CFRP cable composed of multiple anchorage units has good potential in bridge engineering.展开更多
基金The research work reported in this paper was jointly supported by the National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology, China and FASTEN Group Company. Thanks to the support of Wuhan City Building Research Funds (201310), the Fundamental Research Funds for the Central Universities (WUT: 2014-IV-090), and the National Natural Science Foundation of China (Major Program: 61290310). Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
文摘In order to ensure the testing range and long-term reliability of the fiber Bragg grating (FBG) used for the smart cable, a smart cable embedded with FBG strain sensors based on the desensitized encapsulation structure was designed. For a smart cable specimen, the fatigue loading experiments with the cycle from 100 thousands to 2 million and 0.95 times nominal breaking cable force (Pb) were carried out, which tested the long-serving effects of the smart cable. The test results of the static tension loading and unloading during the stepwise fatigue cycle process showed that the encapsulated FBG strain sensors had the good linearity and repeatability. Also all sensors survived after 2 million times fatigue cycle. 0.95Pb static tension test showed that the encapsulated FBG strain sensors embedded inside the cable reached 4.5% testing accuracy in the 0.86Pb working range. After 0.95Pb static tension test, the dissection test was carried out by breaking the force tension. The results showed that the appearances of the encapsulated sensors were good, and the design structures were not changed and damaged.
基金The research work reported in this paper was supported by the National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology, China. Thanks for the support of the Fundamental Research Funds for the Central Universities (WUT: 2014-IV-090) and the National Natural Science Foundation of China (Major Program: 61290310). Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
文摘The smart cable with embedded distributed fiber optical Bragg grating (FBG) sensors was chosen as the object to study a new diagnosis method about broken wires of the bridge cable. The diagnosis strategy based on cable force and stress distribution state of steel wires was put forward. By establishing the bridge-cable and cable-steel wires model, the broken wires sample database was simulated numerically. A method of the characterization cable state pattern which can both represent the degree and location of broken wires inside a cable was put forward. The training and predicting results of the sample database by the back propagation (BP) neural network showed that the proposed broken wires diagnosis method was feasible and expanded the broken wires diagnosis research area by using the smart cable which was used to be only representing cable force.
基金National Natural Science Foundation of China[52178282]Research Funding of the High-Level Talent Project of Hainan Natural Science Foundation[2019RC097]。
文摘Carbon fiber reinforced polymer(CFRP)can be applied for bridge cables due to its excellent properties.As the important load-bearing structural component,real-time force monitoring of the CFRP cable is required.This paper presents a new smart CFRP cable that combines the self-sensing rods with embedded sensors and the anchorage system using extrusion technology.By embedding optical fiber(OF)and coaxial cable Fabry-Perot interferometer(CCFPI)into CFRP rods respectively,two types of self-sensing rods(CFRP-OF rod and CFRP-CCFPI rod)were fabricated.A new anchorage unit using an extrusion process was proposed as a basic component of smart CFRP cables.Anchorage units holding a CFRP-OF rod and a CFRP-CCFPI rod were tested to obtain their sensing and mechanical properties.Three ancho-rage units were assembled to form a smart CFRP cable with self-sensing functionality.A verification test was carried out to confirm the capabil-ity of monitoring the cable force.The test results demonstrate that the smart CFRP cable composed of multiple anchorage units has good potential in bridge engineering.