The exponentially increasing number of heterogeneous Internet of Things(Io T)devices(e.g.,Wi Fi and Zig Bee)crowed in the same ISM band(2.4 G)and recent advances in CrossTechnology Communications(CTC)motivate us to ex...The exponentially increasing number of heterogeneous Internet of Things(Io T)devices(e.g.,Wi Fi and Zig Bee)crowed in the same ISM band(2.4 G)and recent advances in CrossTechnology Communications(CTC)motivate us to explore more efficient data collection and maximize network throughput.CTC enables Wi Fi and Zig Bee devices to communicate directly without any hardware changes or gateway equipment,which sheds light on a more efficient data collection design.In this work,we propose a distributed algorithm,named Max Bee,to compute the maximum network throughput,which is formulated as a linear programming problem.Considering that the problem turns out to be non-convex and hard to solve exactly,we propose a distributed algorithm to solve nonlinear programming by using the dual decomposition method and gradient/subgradient algorithms.Through extensive simulations on different sets of deployed Zig Bee and Wi Fi devices,we observe that the proposed algorithm significantly increases the network throughput based on CTC for Sensor Networks.展开更多
Wireless sensor network(WSN)is considered as the fastest growing technology pattern in recent years because of its applicability in varied domains.Many sensor nodes with different sensing functionalities are deployed ...Wireless sensor network(WSN)is considered as the fastest growing technology pattern in recent years because of its applicability in varied domains.Many sensor nodes with different sensing functionalities are deployed in the monitoring area to collect suitable data and transmit it to the gateway.Ensuring communications in heterogeneous WSNs,is a critical issue that needs to be studied.In this research paper,we study the system performance of a heterogeneous WSN using LoRa–Zigbee hybrid communication.Specifically,two Zigbee sensor clusters and two LoRa sensor clusters are used and combined with two Zigbee-to-LoRa converters to communicate in a network managed by a LoRa gateway.The overall system integrates many different sensors in terms of types,communication protocols,and accuracy,which can be used in many applications in realistic environments such as on land,under water,or in the air.In addition to this,a synchronous management software on ThingSpeak Web server and Blynk app is designed.In the proposed system,the token ring protocol in Zigbee network and polling mechanism in LoRa network is used.The system can operate with a packet loss rate of less than 0.5%when the communication range of the Zigbee network is 630 m,and the communication range of the LoRa network is 3.7 km.On the basis of the digital results collected on the management software,this study proves tremendous improvements in the system performance.展开更多
Accelerate processor, efficient software and pervasive connections provide sensor nodes with more powerful computation and storage ability, which can offer various services to user. Based on these atomic services, dif...Accelerate processor, efficient software and pervasive connections provide sensor nodes with more powerful computation and storage ability, which can offer various services to user. Based on these atomic services, different sensor nodes can cooperate and compose with each other to complete more complicated tasks for user. However, because of the regional characteristic of sensor nodes, merging data with different sensitivities become a primary requirement to the composite services, and information flow security should be intensively considered during service composition. In order to mitigate the great cost caused by the complexity of modeling and the heavy load of single-node verification to the energy-limited sensor node, in this paper, we propose a new distributed verification framework to enforce information flow security on composite services of smart sensor network. We analyze the information flows in composite services and specify security constraints for each service participant. Then we propose an algorithm over the distributed verification framework involving each sensor node to participate in the composite service verification based on the security constraints. The experimental results indicate that our approach can reduce the cost of verification and provide a better load balance.展开更多
Target signal acquisition and detection based on sonar images is a challenging task due to the complex underwater environment.In order to solve the problem that some semantic information in sonar images is lost and mo...Target signal acquisition and detection based on sonar images is a challenging task due to the complex underwater environment.In order to solve the problem that some semantic information in sonar images is lost and model detection performance is degraded due to the complex imaging environment,we proposed a more effective and robust target detection framework based on deep learning,which can make full use of the acoustic shadow information in the forward-looking sonar images to assist underwater target detection.Firstly,the weighted box fusion method is adopted to generate a fusion box by weighted fusion of prediction boxes with high confidence,so as to obtain accurate acoustic shadow boxes.Further,the acoustic shadow box is cut down to get the feature map containing the acoustic shadow information,and then the acoustic shadow feature map and the target information feature map are adaptively fused to make full use of the acoustic shadow feature information.In addition,we introduce a threshold processing module to improve the attention of the model to important feature information.Through the underwater sonar dataset provided by Pengcheng Laboratory,the proposed method improved the average accuracy by 3.14%at the IoU threshold of 0.7,which is better than the current traditional target detection model.展开更多
Nowadays,wireless sensor networks play a vital role in our day to day life.Wireless communication is preferred for many sensing applications due its convenience,flexibility and effectiveness.The sensors to sense the en...Nowadays,wireless sensor networks play a vital role in our day to day life.Wireless communication is preferred for many sensing applications due its convenience,flexibility and effectiveness.The sensors to sense the environmental factor are versatile and send sensed data to central station wirelessly.The cluster based protocols are provided an optimal solution for enhancing the lifetime of the sensor networks.In this paper,modified K-means++algorithm is used to form the cluster and cluster head in an efficient way and the Advanced Energy-Efficient Cluster head selection Algorithm(AEECA)is used to calculate the weighted fac-tor of the transmission path and effective data collection using gateway node.The experimental results show the proposed algorithm outperforms the existing routing algorithms.展开更多
Energy efficient routing is one of the major thrust areas in Wireless Sensor Communication Networks (WSCNs) and it attracts most of the researchers by its valuable applications and various challenges. Wireless sensor ...Energy efficient routing is one of the major thrust areas in Wireless Sensor Communication Networks (WSCNs) and it attracts most of the researchers by its valuable applications and various challenges. Wireless sensor networks contain several nodes in its terrain region. Reducing the energy consumption over the WSCN has its significance since the nodes are battery powered. Various research methodologies were proposed by researchers in this area. One of the bio-inspired computing paradigms named Cuckoo search algorithm is used in this research work for finding the energy efficient path and routing is performed. Several performance metrics are taken into account for determining the performance of the proposed routing protocol such as throughput, packet delivery ratio, energy consumption and delay. Simulation is performed using NS2 and the results shows that the proposed routing protocol is better in terms of average throughput, and average energy consumption.展开更多
eight planets,various asteroids and comets in the solar system.Amount of deep-space scientific experiments promoted people to understand about the origin and evolution of the universe.With the rapid developments of eq...eight planets,various asteroids and comets in the solar system.Amount of deep-space scientific experiments promoted people to understand about the origin and evolution of the universe.With the rapid developments of equipment and spacecraft with high-accuracy detector and long-term energy,more and more ambitious deep-space exploration plans have also been scheduled or under discussion about space resources utilization and space migration,e.g.,manned landing on the Mars,guard infrastructures on the Moon and human-flight to the edge of the solar system(>100 AU),etc.展开更多
Meter Data Collection Building Area Network(MDCBAN) deployed in high rises is playing an increasingly important role in wireless multi-hop smart grid meter data collection. Recently, increasingly numerous application ...Meter Data Collection Building Area Network(MDCBAN) deployed in high rises is playing an increasingly important role in wireless multi-hop smart grid meter data collection. Recently, increasingly numerous application layer data traffic makes MDCBAN be facing serious communication pressure. In addition, large density of meter data collection devices scattered in the limited geographical space of high rises results in obvious communication interference. To solve these problems, a traffic scheduling mechanism based on interference avoidance for meter data collection in MDCBAN is proposed. Firstly, the characteristics of network topology are analyzed and the corresponding traffic distribution model is proposed. Next, a wireless multi-channel selection scheme for different Floor Gateways and a single-channel time unit assignment scheme for data collection devices in the same Floor Network are proposed to avoid interference. At last, a data balanced traffic scheduling algorithm is proposed. Simulation results show that balanced traffic distribution and highly efficient and reliable data transmission can be achieved on the basis of effective interference avoidance between data collection devices.展开更多
Aiming at the significance of the energy controls of wireless sensor networks, an economical energy consumption algorithm for wireless communicating in Wireless Sensor Networks (WSN) is presented. Based on the algorit...Aiming at the significance of the energy controls of wireless sensor networks, an economical energy consumption algorithm for wireless communicating in Wireless Sensor Networks (WSN) is presented. Based on the algorithm, the maximal system throughput of WSN is analyzed, and the upper bound of throughput of WSN is proposed and proved. Some numerical simulations are conducted and analyzed. The conclusions include that the transmitting radius of sensor node and the parameters of the energy cost function have significant influence upon the throughput, but the monitoring region radius has little influence. For the same transmitting distance, the more the hopping of information trans- mitting, the better the throughput of WSN. On the other hand, for the energy optimization of the whole WSN, the trade-off problem between the throughput capacity and the relay nodes is proposed, and the specific expression of relay hops that minimized the energy consumptions and the maximal throughput of WSN under the specific situation is derived.展开更多
Smart Grid (SG) is an emerging paradigm of the modern world to upgrade and enhance the existing conventional electrical power infrastructure from generation to distribution to the consumers in a two-way communication ...Smart Grid (SG) is an emerging paradigm of the modern world to upgrade and enhance the existing conventional electrical power infrastructure from generation to distribution to the consumers in a two-way communication fashion to automate the electrical power demand and supply and make this a cyber-physical system. SG infrastructure key elements, such as smart meters, circuit breakers, transformers, feeders, substations, control centers, grid stations, are required well-formed communication network architectures. SG infrastructure is divided into three main communication networks architectures, such as HAH, NAN, and WAN. Each of these communication network architectures requires reliable, stable, secure, high data rate at real-time with the help of different wireline and wireless communication technologies from HAN to WAN networks. To understand the complete concepts about SG, a concise review is presented and it will help the readers to get foundations of communication network architectures and technologies of SG.展开更多
Energy efficiency and enhanced backbone capacity is obtained by exploiting the geometric orientation of cooperative nodes in wireless sensor network. The cooperative communication in wireless sensor networks (WSN) giv...Energy efficiency and enhanced backbone capacity is obtained by exploiting the geometric orientation of cooperative nodes in wireless sensor network. The cooperative communication in wireless sensor networks (WSN) gives us leverage to get the inherent advantages of its random node’s locations and the direction of the data flow. Depending on the channel conditions and the transmission distance, the number of cooperative nodes is selected, that participate in an energy efficient transmission/reception. Simulation results show that increasing the cooperative receive diversity, decreases the energy consumption per bit in cooperative communications. It has also been shown that the network backbone capacity can be increased by controlled displacement of antennas at base station at the expense of energy per bit.展开更多
SG (smart grids) is an intelligent power grid in which the diverse nodes should communicate different types of information which have different communication requirements with CS (control stations). There exist se...SG (smart grids) is an intelligent power grid in which the diverse nodes should communicate different types of information which have different communication requirements with CS (control stations). There exist several RATs (radio access technologies), with diversification in quality of service character which respect to the SG nodes communication requirements. On the other side, spectrum is becoming a rare source and its demands request is increasing exponentially. Therefore, resource allocation to support different types of SG nodes should be elaborated so that the resource efficiency is maximized while the SG communication requirements are respected. Using a CF (cost function) based on the SG node requirements and RATs characteristics to find the desirability value of every RATs for a certain node type accomplish this goal in combination with prioritizing the different SG nodes types based on SG goals by creating a priority table for RATs and different SG node types. The main node communication requirements are formulized to be used in the CF in this paper. The numerical results show that the proposed method defines the desirability value of each RAT for a certain SG node type that helps to make a priority table by using the SG node prioritization table.展开更多
With the rapid developments of commercial demands,a majority of advanced researches have been investigated for the applications of underwater wireless sensor(WSN)networks.Recently optical communication has...With the rapid developments of commercial demands,a majority of advanced researches have been investigated for the applications of underwater wireless sensor(WSN)networks.Recently optical communication has been considered for underwater wireless sensor network.An experimental set-up for testing optical communication underwater has been provided and designed in present papers to maximize the energy coupled from these displacements to the transduction mechanism that converts the mechanical energy into electrical.The true case has been considered by measuring diffuse attenuation coefficients in different seas.One stand out potential optical communication method,Visible Light Communication(VLC)has been talked and several communication methods are compared from many points of view,for example attenuation in salt water.The evaluation of modulation techniques for underwater wireless optical communications has been displayed,and further how the data collection and storage with an underwater WSN is introduced.In this paper current researches for an(UWSN)based on optical communication are studied,in particular the potential VLC method and comparisons of VLC with other optical communication approaches.Underwater challenges would be analyzed by comparing a sort of communication methods,applied in underwater.Future work will be developed at last.展开更多
This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable th...This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable their passive backscattering and active transmission to the access point(AP). We propose an efficient time scheduling scheme for network performance enhancement, based on which each sensor can always harvest energy from the PB over the entire block except its time slots allocated for passive and active information delivery. Considering the PB and wireless sensors are from two selfish service providers, we use the Stackelberg game to model the energy interaction among them. To address the non-convexity of the leader-level problem, we propose to decompose the original problem into two subproblems and solve them iteratively in an alternating manner. Specifically, the successive convex approximation, semi-definite relaxation(SDR) and variable substitution techniques are applied to find a nearoptimal solution. To evaluate the performance loss caused by the interaction between two providers, we further investigate the social welfare maximization problem. Numerical results demonstrate that compared to the benchmark schemes, the proposed scheme can achieve up to 35.4% and 38.7% utility gain for the leader and the follower, respectively.展开更多
The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure ...The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure domains like oil and gas supply,intelligent transportation,power grids,and autonomous agriculture,it is essential to guarantee the confidentiality,integrity,and authenticity of data collected and exchanged.However,the limited resources coupled with the heterogeneity of IoT devices make it inefficient or sometimes infeasible to achieve secure data transmission using traditional cryptographic techniques.Consequently,designing a lightweight secure data transmission scheme is becoming essential.In this article,we propose lightweight secure data transmission(LSDT)scheme for IoT environments.LSDT consists of three phases and utilizes an effective combination of symmetric keys and the Elliptic Curve Menezes-Qu-Vanstone asymmetric key agreement protocol.We design the simulation environment and experiments to evaluate the performance of the LSDT scheme in terms of communication and computation costs.Security and performance analysis indicates that the LSDT scheme is secure,suitable for IoT applications,and performs better in comparison to other related security schemes.展开更多
Underwater Wireless Sensor Networks(UWSNs)are becoming increasingly popular in marine applications due to advances in wireless and microelectronics technology.However,UWSNs present challenges in processing,energy,and ...Underwater Wireless Sensor Networks(UWSNs)are becoming increasingly popular in marine applications due to advances in wireless and microelectronics technology.However,UWSNs present challenges in processing,energy,and memory storage due to the use of acoustic waves for communication,which results in long delays,significant power consumption,limited bandwidth,and packet loss.This paper provides a comprehensive review of the latest advancements in UWSNs,including essential services,common platforms,critical elements,and components such as localization algorithms,communication,synchronization,security,mobility,and applications.Despite significant progress,reliable and flexible solutions are needed to meet the evolving requirements of UWSNs.The purpose of this paper is to provide a framework for future research in the field of UWSNs by examining recent advancements,establishing a standard platform and service criteria,using a taxonomy to determine critical elements,and emphasizing important unresolved issues.展开更多
Wireless sensor networks are energy constraint networks. Energy efficiency, to prolong the network for a longer time is critical issue for wireless sensor network protocols. Clustering protocols are energy efficient a...Wireless sensor networks are energy constraint networks. Energy efficiency, to prolong the network for a longer time is critical issue for wireless sensor network protocols. Clustering protocols are energy efficient approaches to extend the lifetime of network. Intra-cluster communication is the main driving factor for energy efficiency of clustering protocols. Intra-cluster energy consumption depends upon the position of cluster head in the cluster. Wrongly positioned clusters head make cluster more energy consuming. In this paper, a simple and efficient cluster head selection scheme is proposed, named Smart Cluster Head Selection (SCHS). It can be implemented with any distributed clustering approach. In SCHS, the area is divided into two parts: border area and inner area. Only inner area nodes are eligible for cluster head role. SCHS reduces the intra-cluster communication distance hence improves the energy efficiency of cluster. The simulation results show that SCHS has significant improvement over LEACH in terms of lifetime of network and data units gathered at base station.展开更多
Aiming at the application of a wireless sensor network to locating miners in underground mine,we design a wireless sensor network location node system,considering the communication performance and the intrinsic safety...Aiming at the application of a wireless sensor network to locating miners in underground mine,we design a wireless sensor network location node system,considering the communication performance and the intrinsic safety. The location node system consists of a mobile node,several fixed nodes,and a sink node,all of whose circuits were designed based on CC2430. A varistor and a RC circuit were used in the reset circuit of a sensor node to guarantee the intrinsic safety by reducing discharge energy,the theoretical analysis of the discharge energy shows that the reset circuit is an intrinsic safety one. The analysis and simulation about the performance of the location node system are discussed,such as network communication delay and packet loss rate,the results show that the highest network communication delay of the system is about 0.11 seconds,and the highest packet loss rate is about 0.13,which assures the location node system has a high reliability,and can locate miners in the underground mine.展开更多
With the requirements of multimedia service increasing in people' s life, sensor modules such as microphone, camera are added in the smart home' s sensor network, and the acquisition and processing of a large amount...With the requirements of multimedia service increasing in people' s life, sensor modules such as microphone, camera are added in the smart home' s sensor network, and the acquisition and processing of a large amount of information media such as audio, image and video is becoming a significant characteristics of smart home. The paper focuses on solving the following technical problems: the building of Zigbee multimedia network, the Design and selection of multimedia sensor node. These provide the basic network platform and the core technical support for the building of smart home.展开更多
In order to improve network connectivity in clustered wireless sensor networks,a node cooperative algorithm based on virtual antenna arrays is proposed.All the nodes in the network are assumed to be clustered via Pois...In order to improve network connectivity in clustered wireless sensor networks,a node cooperative algorithm based on virtual antenna arrays is proposed.All the nodes in the network are assumed to be clustered via Poisson Voronoi tessellation(PVT).The activation of the node cooperative algorithm is determined by the cluster heads(CHs) according to communication links.When the cooperative algorithm is activated,the CH selects cooperative nodes(CNs) from its members to form a virtual antenna array.With the cooperation,nodes can extend the inter-cluster communication range to directly contact with further nodes after a coverage hole is detected,or compensate for channel gains while inter-cluster transmission fails due to deep channel fading.Simulation results show that the proposed algorithm achieves better network connectivity and energy efficiency.It can reduce outage probability,sustain network connectivity and maintain operations as long as possible,which prolongs network operation time.展开更多
基金supported by The Project funded by China Postdoctoral Science Foundation(Grant No.2018T110505,2017M611828)The Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions。
文摘The exponentially increasing number of heterogeneous Internet of Things(Io T)devices(e.g.,Wi Fi and Zig Bee)crowed in the same ISM band(2.4 G)and recent advances in CrossTechnology Communications(CTC)motivate us to explore more efficient data collection and maximize network throughput.CTC enables Wi Fi and Zig Bee devices to communicate directly without any hardware changes or gateway equipment,which sheds light on a more efficient data collection design.In this work,we propose a distributed algorithm,named Max Bee,to compute the maximum network throughput,which is formulated as a linear programming problem.Considering that the problem turns out to be non-convex and hard to solve exactly,we propose a distributed algorithm to solve nonlinear programming by using the dual decomposition method and gradient/subgradient algorithms.Through extensive simulations on different sets of deployed Zig Bee and Wi Fi devices,we observe that the proposed algorithm significantly increases the network throughput based on CTC for Sensor Networks.
文摘Wireless sensor network(WSN)is considered as the fastest growing technology pattern in recent years because of its applicability in varied domains.Many sensor nodes with different sensing functionalities are deployed in the monitoring area to collect suitable data and transmit it to the gateway.Ensuring communications in heterogeneous WSNs,is a critical issue that needs to be studied.In this research paper,we study the system performance of a heterogeneous WSN using LoRa–Zigbee hybrid communication.Specifically,two Zigbee sensor clusters and two LoRa sensor clusters are used and combined with two Zigbee-to-LoRa converters to communicate in a network managed by a LoRa gateway.The overall system integrates many different sensors in terms of types,communication protocols,and accuracy,which can be used in many applications in realistic environments such as on land,under water,or in the air.In addition to this,a synchronous management software on ThingSpeak Web server and Blynk app is designed.In the proposed system,the token ring protocol in Zigbee network and polling mechanism in LoRa network is used.The system can operate with a packet loss rate of less than 0.5%when the communication range of the Zigbee network is 630 m,and the communication range of the LoRa network is 3.7 km.On the basis of the digital results collected on the management software,this study proves tremendous improvements in the system performance.
基金supported in part by National Natural Science Foundation of China(61502368,61303033,U1135002 and U1405255)the National High Technology Research and Development Program(863 Program)of China(No.2015AA017203)+1 种基金the Fundamental Research Funds for the Central Universities(XJS14072,JB150308)the Aviation Science Foundation of China(No.2013ZC31003,20141931001)
文摘Accelerate processor, efficient software and pervasive connections provide sensor nodes with more powerful computation and storage ability, which can offer various services to user. Based on these atomic services, different sensor nodes can cooperate and compose with each other to complete more complicated tasks for user. However, because of the regional characteristic of sensor nodes, merging data with different sensitivities become a primary requirement to the composite services, and information flow security should be intensively considered during service composition. In order to mitigate the great cost caused by the complexity of modeling and the heavy load of single-node verification to the energy-limited sensor node, in this paper, we propose a new distributed verification framework to enforce information flow security on composite services of smart sensor network. We analyze the information flows in composite services and specify security constraints for each service participant. Then we propose an algorithm over the distributed verification framework involving each sensor node to participate in the composite service verification based on the security constraints. The experimental results indicate that our approach can reduce the cost of verification and provide a better load balance.
基金This work is supported by National Natural Science Foundation of China(Grant:62272109).
文摘Target signal acquisition and detection based on sonar images is a challenging task due to the complex underwater environment.In order to solve the problem that some semantic information in sonar images is lost and model detection performance is degraded due to the complex imaging environment,we proposed a more effective and robust target detection framework based on deep learning,which can make full use of the acoustic shadow information in the forward-looking sonar images to assist underwater target detection.Firstly,the weighted box fusion method is adopted to generate a fusion box by weighted fusion of prediction boxes with high confidence,so as to obtain accurate acoustic shadow boxes.Further,the acoustic shadow box is cut down to get the feature map containing the acoustic shadow information,and then the acoustic shadow feature map and the target information feature map are adaptively fused to make full use of the acoustic shadow feature information.In addition,we introduce a threshold processing module to improve the attention of the model to important feature information.Through the underwater sonar dataset provided by Pengcheng Laboratory,the proposed method improved the average accuracy by 3.14%at the IoU threshold of 0.7,which is better than the current traditional target detection model.
基金fund received from Department of Science and Technology,Govt.of India,grant no.DST/CERI/MI/SG/2017/080(AU)(G).
文摘Nowadays,wireless sensor networks play a vital role in our day to day life.Wireless communication is preferred for many sensing applications due its convenience,flexibility and effectiveness.The sensors to sense the environmental factor are versatile and send sensed data to central station wirelessly.The cluster based protocols are provided an optimal solution for enhancing the lifetime of the sensor networks.In this paper,modified K-means++algorithm is used to form the cluster and cluster head in an efficient way and the Advanced Energy-Efficient Cluster head selection Algorithm(AEECA)is used to calculate the weighted fac-tor of the transmission path and effective data collection using gateway node.The experimental results show the proposed algorithm outperforms the existing routing algorithms.
文摘Energy efficient routing is one of the major thrust areas in Wireless Sensor Communication Networks (WSCNs) and it attracts most of the researchers by its valuable applications and various challenges. Wireless sensor networks contain several nodes in its terrain region. Reducing the energy consumption over the WSCN has its significance since the nodes are battery powered. Various research methodologies were proposed by researchers in this area. One of the bio-inspired computing paradigms named Cuckoo search algorithm is used in this research work for finding the energy efficient path and routing is performed. Several performance metrics are taken into account for determining the performance of the proposed routing protocol such as throughput, packet delivery ratio, energy consumption and delay. Simulation is performed using NS2 and the results shows that the proposed routing protocol is better in terms of average throughput, and average energy consumption.
文摘eight planets,various asteroids and comets in the solar system.Amount of deep-space scientific experiments promoted people to understand about the origin and evolution of the universe.With the rapid developments of equipment and spacecraft with high-accuracy detector and long-term energy,more and more ambitious deep-space exploration plans have also been scheduled or under discussion about space resources utilization and space migration,e.g.,manned landing on the Mars,guard infrastructures on the Moon and human-flight to the edge of the solar system(>100 AU),etc.
基金supported by the National Science and Technology Support Program of China (2015BAG10B01)the National Science Foundation of China under Grant No. 61232016, No.U1405254the PAPD fund
文摘Meter Data Collection Building Area Network(MDCBAN) deployed in high rises is playing an increasingly important role in wireless multi-hop smart grid meter data collection. Recently, increasingly numerous application layer data traffic makes MDCBAN be facing serious communication pressure. In addition, large density of meter data collection devices scattered in the limited geographical space of high rises results in obvious communication interference. To solve these problems, a traffic scheduling mechanism based on interference avoidance for meter data collection in MDCBAN is proposed. Firstly, the characteristics of network topology are analyzed and the corresponding traffic distribution model is proposed. Next, a wireless multi-channel selection scheme for different Floor Gateways and a single-channel time unit assignment scheme for data collection devices in the same Floor Network are proposed to avoid interference. At last, a data balanced traffic scheduling algorithm is proposed. Simulation results show that balanced traffic distribution and highly efficient and reliable data transmission can be achieved on the basis of effective interference avoidance between data collection devices.
文摘Aiming at the significance of the energy controls of wireless sensor networks, an economical energy consumption algorithm for wireless communicating in Wireless Sensor Networks (WSN) is presented. Based on the algorithm, the maximal system throughput of WSN is analyzed, and the upper bound of throughput of WSN is proposed and proved. Some numerical simulations are conducted and analyzed. The conclusions include that the transmitting radius of sensor node and the parameters of the energy cost function have significant influence upon the throughput, but the monitoring region radius has little influence. For the same transmitting distance, the more the hopping of information trans- mitting, the better the throughput of WSN. On the other hand, for the energy optimization of the whole WSN, the trade-off problem between the throughput capacity and the relay nodes is proposed, and the specific expression of relay hops that minimized the energy consumptions and the maximal throughput of WSN under the specific situation is derived.
文摘Smart Grid (SG) is an emerging paradigm of the modern world to upgrade and enhance the existing conventional electrical power infrastructure from generation to distribution to the consumers in a two-way communication fashion to automate the electrical power demand and supply and make this a cyber-physical system. SG infrastructure key elements, such as smart meters, circuit breakers, transformers, feeders, substations, control centers, grid stations, are required well-formed communication network architectures. SG infrastructure is divided into three main communication networks architectures, such as HAH, NAN, and WAN. Each of these communication network architectures requires reliable, stable, secure, high data rate at real-time with the help of different wireline and wireless communication technologies from HAN to WAN networks. To understand the complete concepts about SG, a concise review is presented and it will help the readers to get foundations of communication network architectures and technologies of SG.
文摘Energy efficiency and enhanced backbone capacity is obtained by exploiting the geometric orientation of cooperative nodes in wireless sensor network. The cooperative communication in wireless sensor networks (WSN) gives us leverage to get the inherent advantages of its random node’s locations and the direction of the data flow. Depending on the channel conditions and the transmission distance, the number of cooperative nodes is selected, that participate in an energy efficient transmission/reception. Simulation results show that increasing the cooperative receive diversity, decreases the energy consumption per bit in cooperative communications. It has also been shown that the network backbone capacity can be increased by controlled displacement of antennas at base station at the expense of energy per bit.
文摘SG (smart grids) is an intelligent power grid in which the diverse nodes should communicate different types of information which have different communication requirements with CS (control stations). There exist several RATs (radio access technologies), with diversification in quality of service character which respect to the SG nodes communication requirements. On the other side, spectrum is becoming a rare source and its demands request is increasing exponentially. Therefore, resource allocation to support different types of SG nodes should be elaborated so that the resource efficiency is maximized while the SG communication requirements are respected. Using a CF (cost function) based on the SG node requirements and RATs characteristics to find the desirability value of every RATs for a certain node type accomplish this goal in combination with prioritizing the different SG nodes types based on SG goals by creating a priority table for RATs and different SG node types. The main node communication requirements are formulized to be used in the CF in this paper. The numerical results show that the proposed method defines the desirability value of each RAT for a certain SG node type that helps to make a priority table by using the SG node prioritization table.
文摘With the rapid developments of commercial demands,a majority of advanced researches have been investigated for the applications of underwater wireless sensor(WSN)networks.Recently optical communication has been considered for underwater wireless sensor network.An experimental set-up for testing optical communication underwater has been provided and designed in present papers to maximize the energy coupled from these displacements to the transduction mechanism that converts the mechanical energy into electrical.The true case has been considered by measuring diffuse attenuation coefficients in different seas.One stand out potential optical communication method,Visible Light Communication(VLC)has been talked and several communication methods are compared from many points of view,for example attenuation in salt water.The evaluation of modulation techniques for underwater wireless optical communications has been displayed,and further how the data collection and storage with an underwater WSN is introduced.In this paper current researches for an(UWSN)based on optical communication are studied,in particular the potential VLC method and comparisons of VLC with other optical communication approaches.Underwater challenges would be analyzed by comparing a sort of communication methods,applied in underwater.Future work will be developed at last.
基金supported by National Natural Science Foundation of China(No.61901229 and No.62071242)the Project of Jiangsu Engineering Research Center of Novel Optical Fiber Technology and Communication Network(No.SDGC2234)+1 种基金the Open Research Project of Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology(No.NJUZDS2022-008)the Post-Doctoral Research Supporting Program of Jiangsu Province(No.SBH20).
文摘This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable their passive backscattering and active transmission to the access point(AP). We propose an efficient time scheduling scheme for network performance enhancement, based on which each sensor can always harvest energy from the PB over the entire block except its time slots allocated for passive and active information delivery. Considering the PB and wireless sensors are from two selfish service providers, we use the Stackelberg game to model the energy interaction among them. To address the non-convexity of the leader-level problem, we propose to decompose the original problem into two subproblems and solve them iteratively in an alternating manner. Specifically, the successive convex approximation, semi-definite relaxation(SDR) and variable substitution techniques are applied to find a nearoptimal solution. To evaluate the performance loss caused by the interaction between two providers, we further investigate the social welfare maximization problem. Numerical results demonstrate that compared to the benchmark schemes, the proposed scheme can achieve up to 35.4% and 38.7% utility gain for the leader and the follower, respectively.
基金support of the Interdisciplinary Research Center for Intelligent Secure Systems(IRC-ISS)Internal Fund Grant#INSS2202.
文摘The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure domains like oil and gas supply,intelligent transportation,power grids,and autonomous agriculture,it is essential to guarantee the confidentiality,integrity,and authenticity of data collected and exchanged.However,the limited resources coupled with the heterogeneity of IoT devices make it inefficient or sometimes infeasible to achieve secure data transmission using traditional cryptographic techniques.Consequently,designing a lightweight secure data transmission scheme is becoming essential.In this article,we propose lightweight secure data transmission(LSDT)scheme for IoT environments.LSDT consists of three phases and utilizes an effective combination of symmetric keys and the Elliptic Curve Menezes-Qu-Vanstone asymmetric key agreement protocol.We design the simulation environment and experiments to evaluate the performance of the LSDT scheme in terms of communication and computation costs.Security and performance analysis indicates that the LSDT scheme is secure,suitable for IoT applications,and performs better in comparison to other related security schemes.
文摘Underwater Wireless Sensor Networks(UWSNs)are becoming increasingly popular in marine applications due to advances in wireless and microelectronics technology.However,UWSNs present challenges in processing,energy,and memory storage due to the use of acoustic waves for communication,which results in long delays,significant power consumption,limited bandwidth,and packet loss.This paper provides a comprehensive review of the latest advancements in UWSNs,including essential services,common platforms,critical elements,and components such as localization algorithms,communication,synchronization,security,mobility,and applications.Despite significant progress,reliable and flexible solutions are needed to meet the evolving requirements of UWSNs.The purpose of this paper is to provide a framework for future research in the field of UWSNs by examining recent advancements,establishing a standard platform and service criteria,using a taxonomy to determine critical elements,and emphasizing important unresolved issues.
文摘Wireless sensor networks are energy constraint networks. Energy efficiency, to prolong the network for a longer time is critical issue for wireless sensor network protocols. Clustering protocols are energy efficient approaches to extend the lifetime of network. Intra-cluster communication is the main driving factor for energy efficiency of clustering protocols. Intra-cluster energy consumption depends upon the position of cluster head in the cluster. Wrongly positioned clusters head make cluster more energy consuming. In this paper, a simple and efficient cluster head selection scheme is proposed, named Smart Cluster Head Selection (SCHS). It can be implemented with any distributed clustering approach. In SCHS, the area is divided into two parts: border area and inner area. Only inner area nodes are eligible for cluster head role. SCHS reduces the intra-cluster communication distance hence improves the energy efficiency of cluster. The simulation results show that SCHS has significant improvement over LEACH in terms of lifetime of network and data units gathered at base station.
基金Projects 20070411065 supported by the China Postdoctoral Science Foundation0801028B by the Jiangsu Postdoctoral Science Research Foundation
文摘Aiming at the application of a wireless sensor network to locating miners in underground mine,we design a wireless sensor network location node system,considering the communication performance and the intrinsic safety. The location node system consists of a mobile node,several fixed nodes,and a sink node,all of whose circuits were designed based on CC2430. A varistor and a RC circuit were used in the reset circuit of a sensor node to guarantee the intrinsic safety by reducing discharge energy,the theoretical analysis of the discharge energy shows that the reset circuit is an intrinsic safety one. The analysis and simulation about the performance of the location node system are discussed,such as network communication delay and packet loss rate,the results show that the highest network communication delay of the system is about 0.11 seconds,and the highest packet loss rate is about 0.13,which assures the location node system has a high reliability,and can locate miners in the underground mine.
文摘With the requirements of multimedia service increasing in people' s life, sensor modules such as microphone, camera are added in the smart home' s sensor network, and the acquisition and processing of a large amount of information media such as audio, image and video is becoming a significant characteristics of smart home. The paper focuses on solving the following technical problems: the building of Zigbee multimedia network, the Design and selection of multimedia sensor node. These provide the basic network platform and the core technical support for the building of smart home.
基金The National Natural Science Foundation of China ( No.60872004, 60972026)the Important National Science and Technology Specific Projects (No. 2010ZX03006-002-01)the Research Fund of the National Mobile Communications Research Laboratory of Southeast University (No.2010A08)
文摘In order to improve network connectivity in clustered wireless sensor networks,a node cooperative algorithm based on virtual antenna arrays is proposed.All the nodes in the network are assumed to be clustered via Poisson Voronoi tessellation(PVT).The activation of the node cooperative algorithm is determined by the cluster heads(CHs) according to communication links.When the cooperative algorithm is activated,the CH selects cooperative nodes(CNs) from its members to form a virtual antenna array.With the cooperation,nodes can extend the inter-cluster communication range to directly contact with further nodes after a coverage hole is detected,or compensate for channel gains while inter-cluster transmission fails due to deep channel fading.Simulation results show that the proposed algorithm achieves better network connectivity and energy efficiency.It can reduce outage probability,sustain network connectivity and maintain operations as long as possible,which prolongs network operation time.