Wireless smart sensors(WSS)process field data and inform inspectors about the infrastructure health and safety.In bridge engineering,inspectors need reliable data about changes in displacements under loads to make cor...Wireless smart sensors(WSS)process field data and inform inspectors about the infrastructure health and safety.In bridge engineering,inspectors need reliable data about changes in displacements under loads to make correct decisions about repairs and replacements.Access to displacement information in the field and in real-time remains a challenge as inspectors do not see the data in real time.Displacement data from WSS in the field undergoes additional processing and is seen at a different location.If inspectors were able to see structural displacements in real-time at the locations of interest,they could conduct additional observations,creating a new,information-based,decision-making reality in the field.This paper develops a new,human-centered interface that provides inspectors with real-time access to actionable structural data during inspection and monitoring enhanced by augmented reality(AR).It summarizes and evaluates the development and validation of the new human-infrastructure interface in laboratory experiments.The experiments demonstrate that the interface that processes all calculations in the AR device accurately estimates dynamic displacements in comparison with the laser.Using this new AR interface tool,inspectors can observe and compare displacement data,share it across space and time,visualize displacements in time history,and understand structural deflection more accurately through a displacement time history visualization.展开更多
The wireless sensor network (WSN) consists of sensor nodes that interact with each other to collectively monitor environmental or physical conditions at different locations for the intended users. One of its potenti...The wireless sensor network (WSN) consists of sensor nodes that interact with each other to collectively monitor environmental or physical conditions at different locations for the intended users. One of its potential deployments is in the form of smart home and ambient assisted living (SHAAL)to measure patients or elderly physiological signals, control home appliances, and monitor home. This paper focuses on the development of a wireless sensor node platform for SHAAL application over WSN which complies with the IEEE 802.15.4 standard and operates in 2.4 GHz ISM (industrial, scientific, and medical) band. The initial stage of SHAAL application development is the design of the wireless sensor node named TelG mote. The main features of TelG mote contributing to the green communications include low power consumption, wearable, flexible, user-friendly, and small sizes. It is then embedded with a self-built operating system named WiseOS to support customized operation. The node can achieve a packet reception rate (PRR) above 80% for a distance of up to 8 m. The designed TelG mote is also comparable with the existing wireless sensor nodes available in the market.展开更多
Under the background of smart grid’s real-time electricity prices theory, a real-time electricity prices and wireless communication smart meter was designed. The metering chip collects power consumption information. ...Under the background of smart grid’s real-time electricity prices theory, a real-time electricity prices and wireless communication smart meter was designed. The metering chip collects power consumption information. The real-time clock chip records current time. The communication between smart meter and system master station is achieved by the wireless communication module. The “freescale” micro controller unit displays power consumption information on screen. And the meter feedbacks the power consumption information to the system master station with time-scale and real-time electricity prices. It results that the information exchange between users and suppers can be realized by the smart meter. It fully reflects the demanding for communication of smart grid.展开更多
Wireless body area networks (WBANs) use RF communication for interconnection of tiny sensor nodes located in, on, or in close prox- imity to the human body. A WBAN enables physiological signals, physical activity, a...Wireless body area networks (WBANs) use RF communication for interconnection of tiny sensor nodes located in, on, or in close prox- imity to the human body. A WBAN enables physiological signals, physical activity, and body position to be continuously monitored.展开更多
Smart home is a promising solution to improving the quality of people's life. Much work has been done in the field, but most of these solutions are just based on home gateway, leaving much to be improved. One of its ...Smart home is a promising solution to improving the quality of people's life. Much work has been done in the field, but most of these solutions are just based on home gateway, leaving much to be improved. One of its defects is the relatively high energy consuming and its radiation, and the other is that it is not available to the old home appliances which fail to access the internet. Full use of the low energy consuming characteristic of the Zigbee wireless sensor network, a completely new smart home solution is put forward in this paper. Without need of a home gateway and any modification for the currently used family appliances, the method uses the Zigbee coordinator as the central controller and the controllers of appliances as the end devices of Zigbee. It can realize a comfortable and smart home. Experiments show that the scheme proposed is feasible and it will be no doubt to be able to improve the quality of people's daily life.展开更多
This paper introduces a mobile phone short message control method in smart home based on GSM (Global System for Mobile communications). AT commands and the system structure is illustrated in detail. The hardware syste...This paper introduces a mobile phone short message control method in smart home based on GSM (Global System for Mobile communications). AT commands and the system structure is illustrated in detail. The hardware system including STC89C51 and TC35i is presented. The software framework is also analyzed clearly in this paper. In addition, some other potential application areas and its direction of development in future are given at last.展开更多
The state-of-the-art query techniques in power grid monitoring systems focus on querying history data, which typically introduces an unwanted lag when the systems try to discover emergency situations. The monitoring d...The state-of-the-art query techniques in power grid monitoring systems focus on querying history data, which typically introduces an unwanted lag when the systems try to discover emergency situations. The monitoring data of large-scale smart grids are massive, dynamic and highly dimensional, so global query, the method widely adopted in continuous queries in Wireless Sensor Networks(WSN), is rendered not suitable for its high energy consumption. The situation is even worse with increasing application complexity. We propose an energy-efficient query technique for large-scale smart grids based on variable regions. This method can query an arbitrary region based on variable physical windows, and optimizes data retrieve paths by a key nodes selection strategy. According to the characteristics of sensing data, we introduce an efficient filter into the each query subtree to keep non-skyline data from being retrieved. Experimental results show that our method can efficiently return the overview situation of any query region. Compared to TAG and ESA, the average query efficiency of our approach is improved by 79% and 46%, respectively; the total energy consumption of regional query is decreased by 82% and 50%, respectively.展开更多
Energy demand will continue to rise as a result of predicted population growth. In this work, a user-friendly home energy monitoring system based on IoT is described, which is capable of collecting, analyzing, and dis...Energy demand will continue to rise as a result of predicted population growth. In this work, a user-friendly home energy monitoring system based on IoT is described, which is capable of collecting, analyzing, and displaying data. Users register their sensors and devices on the monitoring platform. PostgreSQL and Elasticsearch databases are used to store the resulting measurements. In a smart home, the wireless sensor ACS712 was used to monitor the flow of electricity (current and voltage) for a household device. The user can share data about electricity consumption and costs with a third party via the private IPFS (InterPlanetary File System) network. A third party can download all the energy consumption data for a device or many devices from the platform for 1 day, 3 months, 6 months, and 1 year. The studies on the development of energy-efficient technology for home devices benefit greatly from the gathered data. For security in the system, it is preferred to run Keyrock Idm, Wilma Pep Proxy, and Orion Context Broker in HTTPS mode, and MQTTS is used to retrieve sensor data. The experimental results showed that the energy monitoring system accurately records voltage, current, active power, and the total amount of power used and offers low-cost solutions to the users using household devices in a day.展开更多
Smart Grid (SG) is an emerging paradigm of the modern world to upgrade and enhance the existing conventional electrical power infrastructure from generation to distribution to the consumers in a two-way communication ...Smart Grid (SG) is an emerging paradigm of the modern world to upgrade and enhance the existing conventional electrical power infrastructure from generation to distribution to the consumers in a two-way communication fashion to automate the electrical power demand and supply and make this a cyber-physical system. SG infrastructure key elements, such as smart meters, circuit breakers, transformers, feeders, substations, control centers, grid stations, are required well-formed communication network architectures. SG infrastructure is divided into three main communication networks architectures, such as HAH, NAN, and WAN. Each of these communication network architectures requires reliable, stable, secure, high data rate at real-time with the help of different wireline and wireless communication technologies from HAN to WAN networks. To understand the complete concepts about SG, a concise review is presented and it will help the readers to get foundations of communication network architectures and technologies of SG.展开更多
This paper presents an in-depth evaluation of Wireless Sensor Networks. Wireless Sensor Networks have been highlighted as the major component that enables the development of modern infrastructures, such as the Smart G...This paper presents an in-depth evaluation of Wireless Sensor Networks. Wireless Sensor Networks have been highlighted as the major component that enables the development of modern infrastructures, such as the Smart Grid. As part of an on-going edification process on the subject matter, this paper brings to fore the many important functions and components of Wireless Sensor Networks, including application areas, functional architectures, physical topological design, communication protocols, routing schemes and Wireless Sensor Network hardware capabilities.展开更多
Environmental sustainability issues and the costs of new power generation and transmission have increased the interest in evolving current power grid to new technologies. The Smart Grid is a promising technology, sinc...Environmental sustainability issues and the costs of new power generation and transmission have increased the interest in evolving current power grid to new technologies. The Smart Grid is a promising technology, since it allows a distributed computing approach with potentials for self-diagnosing/-healing, reliable multi-user communication and fast hard real-time control. However, the missing standardization associated with heterogeneity of legacy systems and wide-area service demands, makes very challenging to adopt Smart Grid in a cost-effective way. By considering this, we propose the Session-Oriented Communication System (SOCSys) to overcome the above issues by enhancing Smart Grid with truly reliable and robust capabilities over heterogeneous environments. SOCSys achieves this goal by orchestrating session-control with innovative network-centric facilities operating over a wireless mesh Information Network compliant with IEEE 802.11e/s standard. The simulation results show that SOCSys improved network performance in terms of bandwidth utilization and minimization of delay, while consuming low network resources. Graphical analyses showed that SOCSys supported multimedia sessions with excellent quality, where it outperforms the experiments with regular settings.展开更多
Users, especially the non-expert users, commonly experience problems when connecting multiple devices with interoperability. While studies on multiple device connections are mostly concentrated on spontaneous device a...Users, especially the non-expert users, commonly experience problems when connecting multiple devices with interoperability. While studies on multiple device connections are mostly concentrated on spontaneous device association techniques with a focus on security aspects, the research on user interaction for device connection is still limited. More research into understanding people is needed for designers to devise usable techniques. This research applies the Research-through-Design method and studies the non-expert users' interactions in establishing wireless connections between devices. The "Learning from Examples" concept is adopted to develop a study focus line by learning from the expert users' interaction with devices. This focus line is then used for guiding researchers to explore the non-expert users' difficulties at each stage of the focus line. Finally, the Research-through-Design approach is used to understand the users' difficulties, gain insights to design problems and suggest usable solutions. When connecting a device, the user is required to manage not only the device's functionality but also the interaction between devices. Based on learning from failures, an important insight is found that the existing design approach to improve single-device interaction issues, such as improvements to graphical user interfaces or computer guidance, cannot help users to handle problems between multiple devices. This study finally proposes a desirable user-device interaction in which images of two devices function together with a system image to provide the user with feedback on the status of the connection, which allows them to infer any required actions.展开更多
基金Air Force Research Laboratory(AFRL,Grant No.FA9453-18-2-0022)the New Mexico Consortium(NMC,Grant No.2RNA6)the US Department of Transportation Center:Transportation Consortium of South-Central States(TRANSET)Project 19STUNM02(TRANSET,Grant No.8-18-060ST)。
文摘Wireless smart sensors(WSS)process field data and inform inspectors about the infrastructure health and safety.In bridge engineering,inspectors need reliable data about changes in displacements under loads to make correct decisions about repairs and replacements.Access to displacement information in the field and in real-time remains a challenge as inspectors do not see the data in real time.Displacement data from WSS in the field undergoes additional processing and is seen at a different location.If inspectors were able to see structural displacements in real-time at the locations of interest,they could conduct additional observations,creating a new,information-based,decision-making reality in the field.This paper develops a new,human-centered interface that provides inspectors with real-time access to actionable structural data during inspection and monitoring enhanced by augmented reality(AR).It summarizes and evaluates the development and validation of the new human-infrastructure interface in laboratory experiments.The experiments demonstrate that the interface that processes all calculations in the AR device accurately estimates dynamic displacements in comparison with the laser.Using this new AR interface tool,inspectors can observe and compare displacement data,share it across space and time,visualize displacements in time history,and understand structural deflection more accurately through a displacement time history visualization.
基金supported by the Ministry of Higher Education,Malaysia under Grant No.R.J130000.7823.4L626
文摘The wireless sensor network (WSN) consists of sensor nodes that interact with each other to collectively monitor environmental or physical conditions at different locations for the intended users. One of its potential deployments is in the form of smart home and ambient assisted living (SHAAL)to measure patients or elderly physiological signals, control home appliances, and monitor home. This paper focuses on the development of a wireless sensor node platform for SHAAL application over WSN which complies with the IEEE 802.15.4 standard and operates in 2.4 GHz ISM (industrial, scientific, and medical) band. The initial stage of SHAAL application development is the design of the wireless sensor node named TelG mote. The main features of TelG mote contributing to the green communications include low power consumption, wearable, flexible, user-friendly, and small sizes. It is then embedded with a self-built operating system named WiseOS to support customized operation. The node can achieve a packet reception rate (PRR) above 80% for a distance of up to 8 m. The designed TelG mote is also comparable with the existing wireless sensor nodes available in the market.
文摘Under the background of smart grid’s real-time electricity prices theory, a real-time electricity prices and wireless communication smart meter was designed. The metering chip collects power consumption information. The real-time clock chip records current time. The communication between smart meter and system master station is achieved by the wireless communication module. The “freescale” micro controller unit displays power consumption information on screen. And the meter feedbacks the power consumption information to the system master station with time-scale and real-time electricity prices. It results that the information exchange between users and suppers can be realized by the smart meter. It fully reflects the demanding for communication of smart grid.
文摘Wireless body area networks (WBANs) use RF communication for interconnection of tiny sensor nodes located in, on, or in close prox- imity to the human body. A WBAN enables physiological signals, physical activity, and body position to be continuously monitored.
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No.J50103)the Innovation Project of Shanghai Universitythe Research Project of Excellent Young Talents in the Universities in Shanghai
文摘Smart home is a promising solution to improving the quality of people's life. Much work has been done in the field, but most of these solutions are just based on home gateway, leaving much to be improved. One of its defects is the relatively high energy consuming and its radiation, and the other is that it is not available to the old home appliances which fail to access the internet. Full use of the low energy consuming characteristic of the Zigbee wireless sensor network, a completely new smart home solution is put forward in this paper. Without need of a home gateway and any modification for the currently used family appliances, the method uses the Zigbee coordinator as the central controller and the controllers of appliances as the end devices of Zigbee. It can realize a comfortable and smart home. Experiments show that the scheme proposed is feasible and it will be no doubt to be able to improve the quality of people's daily life.
文摘This paper introduces a mobile phone short message control method in smart home based on GSM (Global System for Mobile communications). AT commands and the system structure is illustrated in detail. The hardware system including STC89C51 and TC35i is presented. The software framework is also analyzed clearly in this paper. In addition, some other potential application areas and its direction of development in future are given at last.
基金supported by the National Natural Science Foundation of China (NO. 61472072, 61528202, 61501105, 61472169)the Foundation of Science Public Welfare of Liaoning Province in China (NO. 2015003003)
文摘The state-of-the-art query techniques in power grid monitoring systems focus on querying history data, which typically introduces an unwanted lag when the systems try to discover emergency situations. The monitoring data of large-scale smart grids are massive, dynamic and highly dimensional, so global query, the method widely adopted in continuous queries in Wireless Sensor Networks(WSN), is rendered not suitable for its high energy consumption. The situation is even worse with increasing application complexity. We propose an energy-efficient query technique for large-scale smart grids based on variable regions. This method can query an arbitrary region based on variable physical windows, and optimizes data retrieve paths by a key nodes selection strategy. According to the characteristics of sensing data, we introduce an efficient filter into the each query subtree to keep non-skyline data from being retrieved. Experimental results show that our method can efficiently return the overview situation of any query region. Compared to TAG and ESA, the average query efficiency of our approach is improved by 79% and 46%, respectively; the total energy consumption of regional query is decreased by 82% and 50%, respectively.
文摘Energy demand will continue to rise as a result of predicted population growth. In this work, a user-friendly home energy monitoring system based on IoT is described, which is capable of collecting, analyzing, and displaying data. Users register their sensors and devices on the monitoring platform. PostgreSQL and Elasticsearch databases are used to store the resulting measurements. In a smart home, the wireless sensor ACS712 was used to monitor the flow of electricity (current and voltage) for a household device. The user can share data about electricity consumption and costs with a third party via the private IPFS (InterPlanetary File System) network. A third party can download all the energy consumption data for a device or many devices from the platform for 1 day, 3 months, 6 months, and 1 year. The studies on the development of energy-efficient technology for home devices benefit greatly from the gathered data. For security in the system, it is preferred to run Keyrock Idm, Wilma Pep Proxy, and Orion Context Broker in HTTPS mode, and MQTTS is used to retrieve sensor data. The experimental results showed that the energy monitoring system accurately records voltage, current, active power, and the total amount of power used and offers low-cost solutions to the users using household devices in a day.
文摘Smart Grid (SG) is an emerging paradigm of the modern world to upgrade and enhance the existing conventional electrical power infrastructure from generation to distribution to the consumers in a two-way communication fashion to automate the electrical power demand and supply and make this a cyber-physical system. SG infrastructure key elements, such as smart meters, circuit breakers, transformers, feeders, substations, control centers, grid stations, are required well-formed communication network architectures. SG infrastructure is divided into three main communication networks architectures, such as HAH, NAN, and WAN. Each of these communication network architectures requires reliable, stable, secure, high data rate at real-time with the help of different wireline and wireless communication technologies from HAN to WAN networks. To understand the complete concepts about SG, a concise review is presented and it will help the readers to get foundations of communication network architectures and technologies of SG.
文摘This paper presents an in-depth evaluation of Wireless Sensor Networks. Wireless Sensor Networks have been highlighted as the major component that enables the development of modern infrastructures, such as the Smart Grid. As part of an on-going edification process on the subject matter, this paper brings to fore the many important functions and components of Wireless Sensor Networks, including application areas, functional architectures, physical topological design, communication protocols, routing schemes and Wireless Sensor Network hardware capabilities.
文摘Environmental sustainability issues and the costs of new power generation and transmission have increased the interest in evolving current power grid to new technologies. The Smart Grid is a promising technology, since it allows a distributed computing approach with potentials for self-diagnosing/-healing, reliable multi-user communication and fast hard real-time control. However, the missing standardization associated with heterogeneity of legacy systems and wide-area service demands, makes very challenging to adopt Smart Grid in a cost-effective way. By considering this, we propose the Session-Oriented Communication System (SOCSys) to overcome the above issues by enhancing Smart Grid with truly reliable and robust capabilities over heterogeneous environments. SOCSys achieves this goal by orchestrating session-control with innovative network-centric facilities operating over a wireless mesh Information Network compliant with IEEE 802.11e/s standard. The simulation results show that SOCSys improved network performance in terms of bandwidth utilization and minimization of delay, while consuming low network resources. Graphical analyses showed that SOCSys supported multimedia sessions with excellent quality, where it outperforms the experiments with regular settings.
文摘Users, especially the non-expert users, commonly experience problems when connecting multiple devices with interoperability. While studies on multiple device connections are mostly concentrated on spontaneous device association techniques with a focus on security aspects, the research on user interaction for device connection is still limited. More research into understanding people is needed for designers to devise usable techniques. This research applies the Research-through-Design method and studies the non-expert users' interactions in establishing wireless connections between devices. The "Learning from Examples" concept is adopted to develop a study focus line by learning from the expert users' interaction with devices. This focus line is then used for guiding researchers to explore the non-expert users' difficulties at each stage of the focus line. Finally, the Research-through-Design approach is used to understand the users' difficulties, gain insights to design problems and suggest usable solutions. When connecting a device, the user is required to manage not only the device's functionality but also the interaction between devices. Based on learning from failures, an important insight is found that the existing design approach to improve single-device interaction issues, such as improvements to graphical user interfaces or computer guidance, cannot help users to handle problems between multiple devices. This study finally proposes a desirable user-device interaction in which images of two devices function together with a system image to provide the user with feedback on the status of the connection, which allows them to infer any required actions.