The variation characteristics of bubble morphology and the thermal-physical properties of bubble boundary in the top-blown smelting furnace were explored by means of the computational fluid dynamics method.The essenti...The variation characteristics of bubble morphology and the thermal-physical properties of bubble boundary in the top-blown smelting furnace were explored by means of the computational fluid dynamics method.The essential aspects of the fluid phase(e.g.,splashing volume,dead zone of copper slag,and gas penetration depth)were explored together with the effect of sinusoidal pulsating gas intake on the momentum-transfer performance between phases.The results illustrated that two relatively larger vortices and two smaller vortices appear in the bubble waist and below the lance,respectively.The expansion of larger ones as well as the shrinking of smaller ones combine to cause the contraction of the bubble waist.Compared to the results of the case with a fixed gas injection velocity(V_(g)=58 m/s),the splashing volume and dead zone volume of the slag under the V_(g)=58+10sin(2πt)condition are reduced by 24.9%and 23.5%,respectively,where t represents the instant time.Gas penetration depth and slag motion velocity of the latter are 1.03 and 1.31 times high-er than those of the former,respectively.展开更多
A numerical simulation analysis for reactions of chalcopyrite and pyriteparticles coupled with momentum, heat and mass transfer between the particle and gas in a flashsmelting furnace is presented. In the simulation, ...A numerical simulation analysis for reactions of chalcopyrite and pyriteparticles coupled with momentum, heat and mass transfer between the particle and gas in a flashsmelting furnace is presented. In the simulation, the equations governing the gas flow are solvednumerically by Eular method. The particle phase is introduced into the gas flow by theparti-cle-source-in-cell technique (PSIC). Predictions including the fluid flow field, temperaturefield, concentration field of gas phase and the tracks of particles have been obtained by thenumerical simulation. The visualized results show that the reaction of sulfide particles is almostcompleted in the upper zone of the shaft within 1.5 m far from the central jet distributor (CJD)type concentrate burner. The simulation results are in good agreement with data obtained from aseries of experiments and tests in the plant and the error is less than 2%.展开更多
As to solve the online monitoring of the inner temperatur e and freezing profile of the reaction shaft of flash smelting furnace, simulation of the wall in the reaction shaft in a flash smelting furnace was made throu...As to solve the online monitoring of the inner temperatur e and freezing profile of the reaction shaft of flash smelting furnace, simulation of the wall in the reaction shaft in a flash smelting furnace was made through numerical computation. The computational results are very near the data got in s ite. The error of the moving boundary is approximately 3%, and that of the tempe rature is less than 5%. It is proved that the simulation software is applicable for practice to monitor the temperature and moving boundary inside the hearth on line. Based on a large number of the data computed, the relation between the cha nge of the moving boundary and inner temperature is summarized, and the great in fluence of the cooling system on the forming and stability of the moving boundar y inside the hearth is emphasized, which provide the theoretical bases for optim izing the flash smelting operation.展开更多
The influence of three important operation parameters in Jinlong flashsmelting furnace, including the distributing blast speed, the oxygen enrichment rate of process airand the ratio of central oxygen to overall oxyge...The influence of three important operation parameters in Jinlong flashsmelting furnace, including the distributing blast speed, the oxygen enrichment rate of process airand the ratio of central oxygen to overall oxygen (O_c/O_o), has been investigated using a virtualsimulation system on copper flash smelting furnace. The core of this virtual simulation system is anumerical simulation of CFD (computational fluid dynamics), and this system incorporates couplingmomentum transport, heat transport, mass transport, reaction kinetics between gas and particles andchemical reactions between gas and gas. A set of numerical predicted data were obtained. The CFDsimulation shows that there is a sensitive zone of the distributing blast speed, and the dustcontent ascends when the speed exceeds 180 m centre dot s^(-1). Increasing the oxygen concentrationof processing air benefits the efficient production of the flash smelting furnace.展开更多
Fluid flow, heat transfer and combustion in Jinlong CJD concentrate burnerflash smelting furnace have been investigated by numerical modeling and flow visualization. Themodeling is based on the Eulerian approach for t...Fluid flow, heat transfer and combustion in Jinlong CJD concentrate burnerflash smelting furnace have been investigated by numerical modeling and flow visualization. Themodeling is based on the Eulerian approach for the gas flow equations and the Lagrangian approachfor the particles. Interaction between the gas phase and particle phase, such as frictional forces,heat and mass transfer, are included by the addition of sources and sinks. The modeling resultsincluding the fluid flow field, temperature field, concentration field of gas phase and thetrajectories of particles have been obtained. The predicted results are in good agreement with thedata obtained from a series of experiments and tests in the Jinlong Copper Smelter and thetemperature error is less than 20 K.展开更多
A mathematical model has been presented to study the combustion of a single copper concentrate particle with high moisture content. By using the presented model, the effect of particle moisture content on particle tem...A mathematical model has been presented to study the combustion of a single copper concentrate particle with high moisture content. By using the presented model, the effect of particle moisture content on particle temperature, sulfur oxidation, and combustion heat generation has been evaluated. The mineralogical composition of the commonly used concentrate at Khatoonabad flash smelting furnace has been used in this study. It was found that the particle moisture content is removed in the sub-second time range and thus the moisture has marginal impact on the variation of particle temperature and on the reaction rate when the gas temperature is assumed to be constant in the reaction shaft. When a concentrate with high moisture content is charged, the particle size enlargement due to the agglomeration of concentrate particles causes an abrupt fall in the particle reaction rate.展开更多
Status and state-of-the-art progress on research,development and application of refractories for aluminum smelting furnaces and holding furnaces were reviewed and discussed in the present paper.The main types of alumi...Status and state-of-the-art progress on research,development and application of refractories for aluminum smelting furnaces and holding furnaces were reviewed and discussed in the present paper.The main types of aluminum smelting furnaces and smelting processes,and the service conditions of refractories and the requirements for refractory lining were also described and discussed.展开更多
This paper introduces the refractories used in various nonferrous metal smelting equipment in China and the existing problems, and puts forward suggestions on the material of refractories, application of new technolog...This paper introduces the refractories used in various nonferrous metal smelting equipment in China and the existing problems, and puts forward suggestions on the material of refractories, application of new technologies and production management of refractories, etc.展开更多
In order to realize the OY Smelting Furnace disposal of solid waste,municipal waste,form a model of steel enterprises and urban integration,through the production practice of smelting furnace,analyzes the mechanism of...In order to realize the OY Smelting Furnace disposal of solid waste,municipal waste,form a model of steel enterprises and urban integration,through the production practice of smelting furnace,analyzes the mechanism of solid waste disposal,and proposed the disposal of solid waste desulfurization agent and disposal method:According to the theory to guide the actual production process,the test ton of iron with 10-15kg of desulfurizer in the production process does not affect the quality of molten iron and slag quality.展开更多
A study was carried out on the formation of Ti(C,N) during smelting vanadium-bearing titanomagnetite in blast furnace and the influence of MnO content on reduction of TiO_2 in the slag containing high titania. The red...A study was carried out on the formation of Ti(C,N) during smelting vanadium-bearing titanomagnetite in blast furnace and the influence of MnO content on reduction of TiO_2 in the slag containing high titania. The reduction of TiO_2 is restricted by MnOpredominantly at the slag-metal interface and no more at the slag-coke one. The formation of Ti(C,N) is remarkably restricted by MnO in the slag when the MnO content is about 4% and the basicity from 0.6 to 1.2 in the slag. MnO may also retards the reduction of SiO_2 and accelerates the desulphidation under certain condition.展开更多
An on-line forecasting model based on self-tuning support vectors regression for zinc output was put forward to maximize zinc output by adjusting operational parameters in the process of imperial smelting furnace. In ...An on-line forecasting model based on self-tuning support vectors regression for zinc output was put forward to maximize zinc output by adjusting operational parameters in the process of imperial smelting furnace. In this model, the mathematical model of support vector regression was converted into the same format as support vector machine for classification. Then a simplified sequential minimal optimization for classification was applied to train the regression coefficient vector α- α* and threshold b. Sequentially penalty parameter C was tuned dynamically through forecasting result during the training process. Finally, an on-line forecasting algorithm for zinc output was proposed. The simulation result shows that in spite of a relatively small industrial data set, the effective error is less than 10% with a remarkable performance of real time. The model was applied to the optimization operation and fault diagnosis system for imperial smelting furnace.展开更多
It was very difficult for the smelting of vanadium-bearing titanomagnetite by blast furnace because the content of TiO2 of blast furnace slag could amount to 20%-25%.After long term development and continuous improvem...It was very difficult for the smelting of vanadium-bearing titanomagnetite by blast furnace because the content of TiO2 of blast furnace slag could amount to 20%-25%.After long term development and continuous improvement,special intensified smelting technologies for vanadium-bearing titanomagnetite by blast furnace were obtained and improved gradually.With the improvement of beneficiated material level and equipment level,smelting intensity has been increased gradually and the highest comprehensive smelting intensity reached 1.45 t/(m3·d).Technical-economic indexes of blast furnace have also been increased remarkably.The highest utilization coefficient exceeded 2.7 t/(m3·d)on the condition that the burden grade was only about 50%.展开更多
Reasonable control on CRI(coke reaction index)is one of the key factors for BF(blast furnace)low-carbon smelting.However,there are contrary opinions.One is increasing CRI to improve reaction efficiency in BF and t...Reasonable control on CRI(coke reaction index)is one of the key factors for BF(blast furnace)low-carbon smelting.However,there are contrary opinions.One is increasing CRI to improve reaction efficiency in BF and the other is decreasing CRI to suppress coke degradation in furnace.Different methods are adopted to realize effective catalysis(increasing CRI)and passivation(decreasing CRI)of coke.Simulation tests of coke in BF lumpy zone under gradual temperature rising have been done.Effect of CRI on gas composition,ore reduction,burden column permeability and heat reserve zone′s temperature under non-isothermal condition are studied.Then combined with iron making calculations,a novel BF operation suggestion is proposed as coke nut with small size be catalyzed and mixed with ore while skeletal coke with large size be passivated and separately charged into BF.展开更多
基金the Applied Basic Research Project of Yunnan Province,China(No.202301 AT070411).
文摘The variation characteristics of bubble morphology and the thermal-physical properties of bubble boundary in the top-blown smelting furnace were explored by means of the computational fluid dynamics method.The essential aspects of the fluid phase(e.g.,splashing volume,dead zone of copper slag,and gas penetration depth)were explored together with the effect of sinusoidal pulsating gas intake on the momentum-transfer performance between phases.The results illustrated that two relatively larger vortices and two smaller vortices appear in the bubble waist and below the lance,respectively.The expansion of larger ones as well as the shrinking of smaller ones combine to cause the contraction of the bubble waist.Compared to the results of the case with a fixed gas injection velocity(V_(g)=58 m/s),the splashing volume and dead zone volume of the slag under the V_(g)=58+10sin(2πt)condition are reduced by 24.9%and 23.5%,respectively,where t represents the instant time.Gas penetration depth and slag motion velocity of the latter are 1.03 and 1.31 times high-er than those of the former,respectively.
文摘A numerical simulation analysis for reactions of chalcopyrite and pyriteparticles coupled with momentum, heat and mass transfer between the particle and gas in a flashsmelting furnace is presented. In the simulation, the equations governing the gas flow are solvednumerically by Eular method. The particle phase is introduced into the gas flow by theparti-cle-source-in-cell technique (PSIC). Predictions including the fluid flow field, temperaturefield, concentration field of gas phase and the tracks of particles have been obtained by thenumerical simulation. The visualized results show that the reaction of sulfide particles is almostcompleted in the upper zone of the shaft within 1.5 m far from the central jet distributor (CJD)type concentrate burner. The simulation results are in good agreement with data obtained from aseries of experiments and tests in the plant and the error is less than 2%.
文摘As to solve the online monitoring of the inner temperatur e and freezing profile of the reaction shaft of flash smelting furnace, simulation of the wall in the reaction shaft in a flash smelting furnace was made through numerical computation. The computational results are very near the data got in s ite. The error of the moving boundary is approximately 3%, and that of the tempe rature is less than 5%. It is proved that the simulation software is applicable for practice to monitor the temperature and moving boundary inside the hearth on line. Based on a large number of the data computed, the relation between the cha nge of the moving boundary and inner temperature is summarized, and the great in fluence of the cooling system on the forming and stability of the moving boundar y inside the hearth is emphasized, which provide the theoretical bases for optim izing the flash smelting operation.
文摘The influence of three important operation parameters in Jinlong flashsmelting furnace, including the distributing blast speed, the oxygen enrichment rate of process airand the ratio of central oxygen to overall oxygen (O_c/O_o), has been investigated using a virtualsimulation system on copper flash smelting furnace. The core of this virtual simulation system is anumerical simulation of CFD (computational fluid dynamics), and this system incorporates couplingmomentum transport, heat transport, mass transport, reaction kinetics between gas and particles andchemical reactions between gas and gas. A set of numerical predicted data were obtained. The CFDsimulation shows that there is a sensitive zone of the distributing blast speed, and the dustcontent ascends when the speed exceeds 180 m centre dot s^(-1). Increasing the oxygen concentrationof processing air benefits the efficient production of the flash smelting furnace.
文摘Fluid flow, heat transfer and combustion in Jinlong CJD concentrate burnerflash smelting furnace have been investigated by numerical modeling and flow visualization. Themodeling is based on the Eulerian approach for the gas flow equations and the Lagrangian approachfor the particles. Interaction between the gas phase and particle phase, such as frictional forces,heat and mass transfer, are included by the addition of sources and sinks. The modeling resultsincluding the fluid flow field, temperature field, concentration field of gas phase and thetrajectories of particles have been obtained. The predicted results are in good agreement with thedata obtained from a series of experiments and tests in the Jinlong Copper Smelter and thetemperature error is less than 20 K.
文摘A mathematical model has been presented to study the combustion of a single copper concentrate particle with high moisture content. By using the presented model, the effect of particle moisture content on particle temperature, sulfur oxidation, and combustion heat generation has been evaluated. The mineralogical composition of the commonly used concentrate at Khatoonabad flash smelting furnace has been used in this study. It was found that the particle moisture content is removed in the sub-second time range and thus the moisture has marginal impact on the variation of particle temperature and on the reaction rate when the gas temperature is assumed to be constant in the reaction shaft. When a concentrate with high moisture content is charged, the particle size enlargement due to the agglomeration of concentrate particles causes an abrupt fall in the particle reaction rate.
文摘Status and state-of-the-art progress on research,development and application of refractories for aluminum smelting furnaces and holding furnaces were reviewed and discussed in the present paper.The main types of aluminum smelting furnaces and smelting processes,and the service conditions of refractories and the requirements for refractory lining were also described and discussed.
文摘This paper introduces the refractories used in various nonferrous metal smelting equipment in China and the existing problems, and puts forward suggestions on the material of refractories, application of new technologies and production management of refractories, etc.
文摘In order to realize the OY Smelting Furnace disposal of solid waste,municipal waste,form a model of steel enterprises and urban integration,through the production practice of smelting furnace,analyzes the mechanism of solid waste disposal,and proposed the disposal of solid waste desulfurization agent and disposal method:According to the theory to guide the actual production process,the test ton of iron with 10-15kg of desulfurizer in the production process does not affect the quality of molten iron and slag quality.
文摘A study was carried out on the formation of Ti(C,N) during smelting vanadium-bearing titanomagnetite in blast furnace and the influence of MnO content on reduction of TiO_2 in the slag containing high titania. The reduction of TiO_2 is restricted by MnOpredominantly at the slag-metal interface and no more at the slag-coke one. The formation of Ti(C,N) is remarkably restricted by MnO in the slag when the MnO content is about 4% and the basicity from 0.6 to 1.2 in the slag. MnO may also retards the reduction of SiO_2 and accelerates the desulphidation under certain condition.
文摘An on-line forecasting model based on self-tuning support vectors regression for zinc output was put forward to maximize zinc output by adjusting operational parameters in the process of imperial smelting furnace. In this model, the mathematical model of support vector regression was converted into the same format as support vector machine for classification. Then a simplified sequential minimal optimization for classification was applied to train the regression coefficient vector α- α* and threshold b. Sequentially penalty parameter C was tuned dynamically through forecasting result during the training process. Finally, an on-line forecasting algorithm for zinc output was proposed. The simulation result shows that in spite of a relatively small industrial data set, the effective error is less than 10% with a remarkable performance of real time. The model was applied to the optimization operation and fault diagnosis system for imperial smelting furnace.
文摘It was very difficult for the smelting of vanadium-bearing titanomagnetite by blast furnace because the content of TiO2 of blast furnace slag could amount to 20%-25%.After long term development and continuous improvement,special intensified smelting technologies for vanadium-bearing titanomagnetite by blast furnace were obtained and improved gradually.With the improvement of beneficiated material level and equipment level,smelting intensity has been increased gradually and the highest comprehensive smelting intensity reached 1.45 t/(m3·d).Technical-economic indexes of blast furnace have also been increased remarkably.The highest utilization coefficient exceeded 2.7 t/(m3·d)on the condition that the burden grade was only about 50%.
基金Sponsored by National Natural Science Foundation of China(61271303)Fundamental Research Funds for CentralUniversities of China(FRF-TP-12-029A)
文摘Reasonable control on CRI(coke reaction index)is one of the key factors for BF(blast furnace)low-carbon smelting.However,there are contrary opinions.One is increasing CRI to improve reaction efficiency in BF and the other is decreasing CRI to suppress coke degradation in furnace.Different methods are adopted to realize effective catalysis(increasing CRI)and passivation(decreasing CRI)of coke.Simulation tests of coke in BF lumpy zone under gradual temperature rising have been done.Effect of CRI on gas composition,ore reduction,burden column permeability and heat reserve zone′s temperature under non-isothermal condition are studied.Then combined with iron making calculations,a novel BF operation suggestion is proposed as coke nut with small size be catalyzed and mixed with ore while skeletal coke with large size be passivated and separately charged into BF.