Separated preparation of prealloys and amorphous alloys results in severe solidification-remelting and beneficial element removal-readdition contradictions,which markedly increase energy consumption and emissions.This...Separated preparation of prealloys and amorphous alloys results in severe solidification-remelting and beneficial element removal-readdition contradictions,which markedly increase energy consumption and emissions.This study offered a novel strategy for the direct production of FePC amorphous soft magnetic alloys via smelting reduction of high-phosphorus iron ore(HPIO)and apatite.First,the thermodynamic conditions and equilibrium states of the carbothermal reduction reactions in HPIO were calculated,and the element content in reduced alloys was theoretically determined.The phase and structural evolutions,as well as element migration and enrichment behaviors during the smelting reduction of HPIO and Ca_(3)(PO_(4))_(2),were then experimentally verified.The addition of Ca_(3)(PO_(4))_(2)in HPIO contributes to the enrichment of the P element in reduced alloys and the subsequent development of Fe_(3)P and Fe_(2)P phases.The content of P and C elements in the range of 1.52 wt% -14.63 wt% and 0.62 wt% -2.47 wt%,respectively,can be well tailored by adding 0-50 g Ca_(3)(PO_(4))_(2)and controlling the C/O mole ratio of 0.8-1.1,which is highly consistent with the calculated results.These FePC alloys were then successfully formed into amorphous ribbons and rods.The energy consumption of the proposed strategy was estimated to be 2.00×10^(8) kJ/t,which is reduced by 30% when compared with the conventional production process.These results are critical for the comprehensive utilization of mineral resources and pave the way for the clean production of Fe-based amorphous soft magnetic alloys.展开更多
Due to its high strength,high density,high hardness and good penetration capabilities,Depleted uranium alloys have already shined in armor-piercing projectiles.There should also be a lot of room for improvement in the...Due to its high strength,high density,high hardness and good penetration capabilities,Depleted uranium alloys have already shined in armor-piercing projectiles.There should also be a lot of room for improvement in the application of fragment killing elements.Therefore,regarding the performance of the depleted uranium alloy to penetrate the target plate,further investigation is needed to analyze its advantages and disadvantages compared to tungsten alloy.To study the difference in penetration performance between depleted uranium alloy and tungsten alloy fragments,firstly,a theoretical analysis of the adiabatic shear sensitivity of DU and tungsten alloys was given from the perspective of material constitutive model.Then,taking the cylindrical fragment penetration target as the research object,the penetration process and velocity characteristics of the steel target plates penetrated by DU alloy fragment and tungsten alloy fragment were compared and analyzed,by using finite element software ANSYS/LS-DYNA and Lagrange algorithm.Lastly,the influence of different postures when impacting target and different fragment shapes on the penetration results is carried out in the research.The results show that in the penetration process of the DU and tungsten alloy fragments,the self-sharpening properties of the DU alloy can make the fragment head sharper and the penetrating ability enhance.Under the same conditions,the penetration capability of cylindrical fragment impacting target in vertical posture is better than that in horizontal posture,and the penetration capability of the spherical fragment is slightly better than that of cylindrical fragment.展开更多
The preparation of ferronickel alloy from the nickel laterite ore with low Co and high MgO contents was studied by using a pre-reduction-smelting method. The effects of reduction time, calcination temperature, quantit...The preparation of ferronickel alloy from the nickel laterite ore with low Co and high MgO contents was studied by using a pre-reduction-smelting method. The effects of reduction time, calcination temperature, quantity of reductant and calcium oxide (CaO), and pellet diameter on the reduction ratio of Fe and on the pellet strength were investigated. The results show that, for a roasting temperature > 800 A degrees C, a roasting time > 30 min, 1.5wt% added anthracite coal, 5wt% added CaO, and a pellet size of similar to 10 mm, the reduction ratio of Fe exceeds 70% and the compressive strength of the pellets exceeds 10 kg per pellet. Reduction smelting experiments were performed by varying the smelting time, temperature, quantity of reductant and CaO, and reduction ratio of Fe in the pellets. Optimal conditions for the reduction smelting process are as follows: smelting time, 30-45 min; smelting temperature, 1550A degrees C; quantity of reductant, 4wt%-5wt%; and quantity of CaO, 5wt%; leading to an Fe reduction ratio of 75% in the pellets. In addition, the mineral composition of the raw ore and that during the reduction process were investigated by process mineralogy.展开更多
Hydriding properties of uranium alloys have been studied to search for new hydrogen storage materials to be applied to hydrogen energy systems. Application of uranium-base hydrogen storage materials can be expected to...Hydriding properties of uranium alloys have been studied to search for new hydrogen storage materials to be applied to hydrogen energy systems. Application of uranium-base hydrogen storage materials can be expected to alleviate the risk, as well as to reduce the cost incurred by globally-stored large amounts of depleted uranium left after uranium enrichment. Various uranium alloys have been examined in terms of hydrogen absorptiondesorption properties, among which UNi Al intermetallic compound showed promising characteristics, such as lower absorption-desorption temperatures and better anti-powdering strength. First principle calculation has been carried out on UNi Al hydride to predict the change of crystal structure and the lattice constant with increasing hydrogen content, which showed this calculation to be promising in predicting candidates for good hydrogen absorbers.展开更多
The reduction smelting process for cobalt recovery from converter slag of the Chambishi Copper Smelter in Zambia was studied. The effects of reducing agent dosage, smelting temperature and time and the addition of sla...The reduction smelting process for cobalt recovery from converter slag of the Chambishi Copper Smelter in Zambia was studied. The effects of reducing agent dosage, smelting temperature and time and the addition of slag modifiers (CaO and TiO2) were investigated. In addition, the depleted slag and cobalt-bearing alloy were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. Under the determined conditions, 94.02% Co, 95.76% Cu and less than 18% Fe in the converter slag were recovered. It was found that the main phases of depleted slag were fayalite and hercynite; and the cobalt-bearing alloy mainly contained metallic copper, Fe-Co-Cu alloys and a small amount of sulfide.展开更多
The effect of nickel oxide additive on the smelting behaviors of chromium-bearing vanadium titanomagnetite pellets(CVTP)was investigated while analyzing the transfer behavior of nickel in iron and slag.The results sho...The effect of nickel oxide additive on the smelting behaviors of chromium-bearing vanadium titanomagnetite pellets(CVTP)was investigated while analyzing the transfer behavior of nickel in iron and slag.The results show that when NiO added to CVTP increases from 0 to 6 wt.%,softening start temperature increases from 1148 to 1212℃,and the softening end temperature increases from 1280 to 1334℃;the melting start temperature increases from 1318 to 1377℃,and the dripping temperature decreases from 1558 to 1521℃.The pig iron comprises a compound of Fe-Ni-C.The slag structure depolymerizes with increasing nickel addition.The softening-melting behaviors of CVTP,the reduction of nickel into pig iron,and the depolymerization of slag structure indicate the feasibility of producing nickel-iron alloy through the blast furnace process.展开更多
The experiments of preparation of Al Si alloys by electrothermal process were carried out respectively in 20 kW, 100 kW and 1 800 kW DC arc furnaces. The mechanism of furnace bottom rise was studied. It was found that...The experiments of preparation of Al Si alloys by electrothermal process were carried out respectively in 20 kW, 100 kW and 1 800 kW DC arc furnaces. The mechanism of furnace bottom rise was studied. It was found that the bottom rise can be divided into three types, including the low bottom temperature, abnormal reducing reaction and carbide deposition. The furnace bottom rise is related to the carbon ratio of the briquet, the heating speed of the briquet and the parameters and operation of furnace.展开更多
When smelting reduction of chromium and nickel concentrate with C Si Al as compound reductive is conducted in a plasma induction furnace, the alloying target value of 18%Cr and 9%Ni could be achieved in 20 minutes, th...When smelting reduction of chromium and nickel concentrate with C Si Al as compound reductive is conducted in a plasma induction furnace, the alloying target value of 18%Cr and 9%Ni could be achieved in 20 minutes, the recovery rate of Cr and Ni would reach 82 85% and 95 98% respectively. Content of C could be limited within 0.3%. This paper also analysis the properties of electrochemical reaction between slag and molten metal.展开更多
Copper alloy was adopted to prepare helicopter rotor counterbalance component by means of permanent-mold casting. Process parameters were determined on the basis of theory calculation and computer numerical simulation...Copper alloy was adopted to prepare helicopter rotor counterbalance component by means of permanent-mold casting. Process parameters were determined on the basis of theory calculation and computer numerical simulation. Through controlling mould temperature, pouring temperature and speed, the defects, such as gas cavity, shrinkage porosity, cold shut, can be effectively avoided. The results show that the best process parameters for smelting are as follows: pouring temperature is 1 100 ℃, pouring time is 14 s and opened mould time is 6 min. Mixture of 90% charcoal powder and 10% fluorite were selected as covering agent and 0.01% phosphorus copper acts as oxidizer. The density of rotor counterbalance component after casting in permanent-mold is 99.91% of its theory density. Mechanical properties are as follows: σb=315 MPa, σ0.2=143 MPa, δ=25%, HB=950. The mass deviation is between -5 g and +5 g, the curved surface distortion is less than 0.20 mm, and the largest tolerance of sectional thickness can be controlled between -0.10 mm and +0.10 mm.展开更多
To shed a light on Xe bubble nucleation in U–Mo fuel from the view of primary irradiation damage,a reported U–Mo–Xe potential under the framework of embedded atom method has been modified within the range of short ...To shed a light on Xe bubble nucleation in U–Mo fuel from the view of primary irradiation damage,a reported U–Mo–Xe potential under the framework of embedded atom method has been modified within the range of short and intermediate atomic distance.The modified potential can better describe the interactions between energetic particles,and can accurately reproduce the threshold displacement energy surface calculated by the first-principles method.Then,molecular dynamics simulations of primary irradiation damage in U–Mo–Xe system have been conducted under different contents.The raise of Xe concentration brings about a remarkable promotion in residual defect quantity and generates bubbles in more overpressured state,which suggests an acceleration of irradiation damage under the accumulation of the fission gas.Meanwhile,the addition of Mo considerably reduces the residual defect count and hinders irradiation-induced Xe diffusion especially at high contents of Xe,corroborating the importance of high Mo content in mitigation of irradiation damage and swelling behavior in U–Mo fuel.In particular,the variation of irradiation damage with respect to contents suggests a necessity of taking into account the influence of local components on defect evolution in mesoscale simulations.展开更多
Saturated vapor pressure, critical evaporation temperature and evaporation loss rate of Fe-Ga alloy were calculated under different conditions of Ga and Fe contents with activity coefficients. The relationship between...Saturated vapor pressure, critical evaporation temperature and evaporation loss rate of Fe-Ga alloy were calculated under different conditions of Ga and Fe contents with activity coefficients. The relationship between the change of Ga content and melting time was determined. The results demonstrated that saturated vapor pressure of Ga was higher than that of Fe under the same conditions. The difference value of critical evaporation temperature of Ga with and without Ar was nearly 800 K. The critical evaporation temperature of Fe was higher than that of Ga under vacuum, indicating that Ga was more volatile than Fe. At 1800 K, the evaporation rate of Ga was 84 times higher than that of Fe in the melt of Fe81Ga19 alloy. Under this condition, the change of Ga content and smelting time kept a linear relationship. The higher the temperature was, the faster the Ga content decreased, which was consistent with theoretical calculations.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52174217 and 52304354)the China Postdoctoral Science Foundation(No.2020M682495)。
文摘Separated preparation of prealloys and amorphous alloys results in severe solidification-remelting and beneficial element removal-readdition contradictions,which markedly increase energy consumption and emissions.This study offered a novel strategy for the direct production of FePC amorphous soft magnetic alloys via smelting reduction of high-phosphorus iron ore(HPIO)and apatite.First,the thermodynamic conditions and equilibrium states of the carbothermal reduction reactions in HPIO were calculated,and the element content in reduced alloys was theoretically determined.The phase and structural evolutions,as well as element migration and enrichment behaviors during the smelting reduction of HPIO and Ca_(3)(PO_(4))_(2),were then experimentally verified.The addition of Ca_(3)(PO_(4))_(2)in HPIO contributes to the enrichment of the P element in reduced alloys and the subsequent development of Fe_(3)P and Fe_(2)P phases.The content of P and C elements in the range of 1.52 wt% -14.63 wt% and 0.62 wt% -2.47 wt%,respectively,can be well tailored by adding 0-50 g Ca_(3)(PO_(4))_(2)and controlling the C/O mole ratio of 0.8-1.1,which is highly consistent with the calculated results.These FePC alloys were then successfully formed into amorphous ribbons and rods.The energy consumption of the proposed strategy was estimated to be 2.00×10^(8) kJ/t,which is reduced by 30% when compared with the conventional production process.These results are critical for the comprehensive utilization of mineral resources and pave the way for the clean production of Fe-based amorphous soft magnetic alloys.
文摘Due to its high strength,high density,high hardness and good penetration capabilities,Depleted uranium alloys have already shined in armor-piercing projectiles.There should also be a lot of room for improvement in the application of fragment killing elements.Therefore,regarding the performance of the depleted uranium alloy to penetrate the target plate,further investigation is needed to analyze its advantages and disadvantages compared to tungsten alloy.To study the difference in penetration performance between depleted uranium alloy and tungsten alloy fragments,firstly,a theoretical analysis of the adiabatic shear sensitivity of DU and tungsten alloys was given from the perspective of material constitutive model.Then,taking the cylindrical fragment penetration target as the research object,the penetration process and velocity characteristics of the steel target plates penetrated by DU alloy fragment and tungsten alloy fragment were compared and analyzed,by using finite element software ANSYS/LS-DYNA and Lagrange algorithm.Lastly,the influence of different postures when impacting target and different fragment shapes on the penetration results is carried out in the research.The results show that in the penetration process of the DU and tungsten alloy fragments,the self-sharpening properties of the DU alloy can make the fragment head sharper and the penetrating ability enhance.Under the same conditions,the penetration capability of cylindrical fragment impacting target in vertical posture is better than that in horizontal posture,and the penetration capability of the spherical fragment is slightly better than that of cylindrical fragment.
基金financially supported by the National Natural Science Foundation of China(Nos.U1302274 and 51274044)
文摘The preparation of ferronickel alloy from the nickel laterite ore with low Co and high MgO contents was studied by using a pre-reduction-smelting method. The effects of reduction time, calcination temperature, quantity of reductant and calcium oxide (CaO), and pellet diameter on the reduction ratio of Fe and on the pellet strength were investigated. The results show that, for a roasting temperature > 800 A degrees C, a roasting time > 30 min, 1.5wt% added anthracite coal, 5wt% added CaO, and a pellet size of similar to 10 mm, the reduction ratio of Fe exceeds 70% and the compressive strength of the pellets exceeds 10 kg per pellet. Reduction smelting experiments were performed by varying the smelting time, temperature, quantity of reductant and CaO, and reduction ratio of Fe in the pellets. Optimal conditions for the reduction smelting process are as follows: smelting time, 30-45 min; smelting temperature, 1550A degrees C; quantity of reductant, 4wt%-5wt%; and quantity of CaO, 5wt%; leading to an Fe reduction ratio of 75% in the pellets. In addition, the mineral composition of the raw ore and that during the reduction process were investigated by process mineralogy.
基金Supported by Grants-in-Aid for Scientific Research(No.25420903)from the Ministry of Education,Culture,Sports,Science and Technology of Japan and Japan Industrial Location Center
文摘Hydriding properties of uranium alloys have been studied to search for new hydrogen storage materials to be applied to hydrogen energy systems. Application of uranium-base hydrogen storage materials can be expected to alleviate the risk, as well as to reduce the cost incurred by globally-stored large amounts of depleted uranium left after uranium enrichment. Various uranium alloys have been examined in terms of hydrogen absorptiondesorption properties, among which UNi Al intermetallic compound showed promising characteristics, such as lower absorption-desorption temperatures and better anti-powdering strength. First principle calculation has been carried out on UNi Al hydride to predict the change of crystal structure and the lattice constant with increasing hydrogen content, which showed this calculation to be promising in predicting candidates for good hydrogen absorbers.
基金Project(2008BAB34B01-1)supported by the National Key Technology R&D Program of China
文摘The reduction smelting process for cobalt recovery from converter slag of the Chambishi Copper Smelter in Zambia was studied. The effects of reducing agent dosage, smelting temperature and time and the addition of slag modifiers (CaO and TiO2) were investigated. In addition, the depleted slag and cobalt-bearing alloy were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. Under the determined conditions, 94.02% Co, 95.76% Cu and less than 18% Fe in the converter slag were recovered. It was found that the main phases of depleted slag were fayalite and hercynite; and the cobalt-bearing alloy mainly contained metallic copper, Fe-Co-Cu alloys and a small amount of sulfide.
基金financial supports from the National Natural Science Foundation of China(Nos.21908020,U1908226)。
文摘The effect of nickel oxide additive on the smelting behaviors of chromium-bearing vanadium titanomagnetite pellets(CVTP)was investigated while analyzing the transfer behavior of nickel in iron and slag.The results show that when NiO added to CVTP increases from 0 to 6 wt.%,softening start temperature increases from 1148 to 1212℃,and the softening end temperature increases from 1280 to 1334℃;the melting start temperature increases from 1318 to 1377℃,and the dripping temperature decreases from 1558 to 1521℃.The pig iron comprises a compound of Fe-Ni-C.The slag structure depolymerizes with increasing nickel addition.The softening-melting behaviors of CVTP,the reduction of nickel into pig iron,and the depolymerization of slag structure indicate the feasibility of producing nickel-iron alloy through the blast furnace process.
文摘The experiments of preparation of Al Si alloys by electrothermal process were carried out respectively in 20 kW, 100 kW and 1 800 kW DC arc furnaces. The mechanism of furnace bottom rise was studied. It was found that the bottom rise can be divided into three types, including the low bottom temperature, abnormal reducing reaction and carbide deposition. The furnace bottom rise is related to the carbon ratio of the briquet, the heating speed of the briquet and the parameters and operation of furnace.
文摘When smelting reduction of chromium and nickel concentrate with C Si Al as compound reductive is conducted in a plasma induction furnace, the alloying target value of 18%Cr and 9%Ni could be achieved in 20 minutes, the recovery rate of Cr and Ni would reach 82 85% and 95 98% respectively. Content of C could be limited within 0.3%. This paper also analysis the properties of electrochemical reaction between slag and molten metal.
文摘Copper alloy was adopted to prepare helicopter rotor counterbalance component by means of permanent-mold casting. Process parameters were determined on the basis of theory calculation and computer numerical simulation. Through controlling mould temperature, pouring temperature and speed, the defects, such as gas cavity, shrinkage porosity, cold shut, can be effectively avoided. The results show that the best process parameters for smelting are as follows: pouring temperature is 1 100 ℃, pouring time is 14 s and opened mould time is 6 min. Mixture of 90% charcoal powder and 10% fluorite were selected as covering agent and 0.01% phosphorus copper acts as oxidizer. The density of rotor counterbalance component after casting in permanent-mold is 99.91% of its theory density. Mechanical properties are as follows: σb=315 MPa, σ0.2=143 MPa, δ=25%, HB=950. The mass deviation is between -5 g and +5 g, the curved surface distortion is less than 0.20 mm, and the largest tolerance of sectional thickness can be controlled between -0.10 mm and +0.10 mm.
基金the National Key Research and Development Program of China(Grant No.2017YFB0702401)the National Natural Science Foundation of China(Grant No.51631005).
文摘To shed a light on Xe bubble nucleation in U–Mo fuel from the view of primary irradiation damage,a reported U–Mo–Xe potential under the framework of embedded atom method has been modified within the range of short and intermediate atomic distance.The modified potential can better describe the interactions between energetic particles,and can accurately reproduce the threshold displacement energy surface calculated by the first-principles method.Then,molecular dynamics simulations of primary irradiation damage in U–Mo–Xe system have been conducted under different contents.The raise of Xe concentration brings about a remarkable promotion in residual defect quantity and generates bubbles in more overpressured state,which suggests an acceleration of irradiation damage under the accumulation of the fission gas.Meanwhile,the addition of Mo considerably reduces the residual defect count and hinders irradiation-induced Xe diffusion especially at high contents of Xe,corroborating the importance of high Mo content in mitigation of irradiation damage and swelling behavior in U–Mo fuel.In particular,the variation of irradiation damage with respect to contents suggests a necessity of taking into account the influence of local components on defect evolution in mesoscale simulations.
基金Item Sponsored by National Natural Science Foundation of China(51161019)Project of Department of Science and Technology of Jiangxi Province of China(20133BBE50011)Project of Department of Science & Technology of Jiangxi Province of China(20141BDH80025)
文摘Saturated vapor pressure, critical evaporation temperature and evaporation loss rate of Fe-Ga alloy were calculated under different conditions of Ga and Fe contents with activity coefficients. The relationship between the change of Ga content and melting time was determined. The results demonstrated that saturated vapor pressure of Ga was higher than that of Fe under the same conditions. The difference value of critical evaporation temperature of Ga with and without Ar was nearly 800 K. The critical evaporation temperature of Fe was higher than that of Ga under vacuum, indicating that Ga was more volatile than Fe. At 1800 K, the evaporation rate of Ga was 84 times higher than that of Fe in the melt of Fe81Ga19 alloy. Under this condition, the change of Ga content and smelting time kept a linear relationship. The higher the temperature was, the faster the Ga content decreased, which was consistent with theoretical calculations.