The simplified transfer function diagram block for a monitor automatic gauge control (Mon-AGC) system of strip steel rolling process was investigated. The new notion of strip sample length was given. In this way, th...The simplified transfer function diagram block for a monitor automatic gauge control (Mon-AGC) system of strip steel rolling process was investigated. The new notion of strip sample length was given. In this way, the delay time varying with the rolling speed was evaded. After a Smith predictor was used to monitor the AGC system, the control laws were deduced for both proportional and integral regulators. The control strategies showed that by choosing the controller parameter P=∞ for both control algo- rithms each regulator could compensate the whole strip gage error in the first control step. The result shows that the integral algo- rithm is more controllable for the system regulating process and has a better steady-state precision than the proportional regulator. Compared with the traditional control strategy, the new control laws have a faster response speed and a hieher steadv-state precision.展开更多
Flatness is one of the most important criterion factors to evaluate the quality of the steel strip. To improve the strip' s flatness quality, the most frequently used methodology is to employ the closed-loop automati...Flatness is one of the most important criterion factors to evaluate the quality of the steel strip. To improve the strip' s flatness quality, the most frequently used methodology is to employ the closed-loop automatic shape control system. However, in the shape control system, the shape-meter is always installed at the down way of the exit of the cold rolling mill and can not sense the changes of the strip flatness in the rolling gap directly. This kind of installation results in the delay of the feedback in the control system. Therefore, the stability and response performance of the system are strongly affected by the delay. At present, there is still no mature way to design controllers for systems with time delay. Although the conventional PID controller used in most practical applications has the capability to compensate the delay, the effect of the compensation is limited, especially for the systems with long time delay. Smith predictor, as a compensator for solving this problem, is now widely used in industry systems. However, the request of highly precise model of the system and the poor adaptive performance to the changes of related parameters limit the application of the Smith predictor in practice. In order to overcome the drawbacks of the Smith predictor, a new Smith predictor based on single neural network PID (SNN-PID) is proposed. Because the single neural network is employed into the Smith predictor to improve the controller's self-adaptability, the adaptive capability to the varying parameters of the system is improved. Meanwhile, for the purpose of solving the problems such as time-consuming and complicated calculation of the neural networks in real time, the learning coefficient of neural network is divided into several stages as usually done in expert control system. Therefore, the control system can obtain fast response due to the improved calculation speed of the neural networks. In order to validate the performance of the proposed controller, the experiment is conducted on the shape control system in a 300 mm four-high reversing cold rolling mill. The experimental results show that the SNN-PID with Smith predictor controller can effectively compensate the delay effects and achieve better control performance than the conventional PID controller.展开更多
Inter-area low frequency oscillation in power system is one of the major problems for bulk power transmission through weak tie lines.Use of wide-area signal is more effective than the local area signal in damping out ...Inter-area low frequency oscillation in power system is one of the major problems for bulk power transmission through weak tie lines.Use of wide-area signal is more effective than the local area signal in damping out the inter-area oscillations.Wide area measurement system(WAMS)is convenient to transmit the wide area signal through the communication channel to the remote location.Communication failure is one of the disastrous phenomena in a communication channel.In this paper,a dual input single output(DISO)Hm controller is designed to build the control resiliency by employing two highest observability ranking wide area signals with respect to the critical damping inter-area mode.The proposed controller can provide sufficient damping to the system and also the system remains stabilized if one of the wide-area signals is lost.The time delay is an unwanted phenomenon that degrades the performance of the controllers.The unified Smith predictor approach is used to design a Hm controller to handle the time delay.Kundur's two-area and IEEE-39 bus test systems are considered to verify the effectiveness of the proposed controller.From the simulation results,it is verified that,the proposed controller provides excellent damping performance at normal communication and improves the controller resiliency to counteract the communication failure.展开更多
A robust tuning method for ο^Astroem's two-degree of Freedom Modified Smith Predictor (MSP) is proposed, and it can achieve the fast setpoint and load disturbance responses independently. The tuning rules may meet...A robust tuning method for ο^Astroem's two-degree of Freedom Modified Smith Predictor (MSP) is proposed, and it can achieve the fast setpoint and load disturbance responses independently. The tuning rules may meet the requirements within a certain delay margin according to the robustness theory. The simulation results illustrate that the tuning method is efficient compared with other controllers. Finally, the MSP controller is applied to the 15L batch fermentation system for controlling the temperature in bioreactor, and the experiment results further verify that the robust tuning rules may achieve good performance.展开更多
气弹控制系统的驱动器、闭环信号回路在实际中会存在时滞环节,由于气弹敏感性和环境复杂性,时滞会引起控制信号迟延并导致气弹控制极速恶化、甚至造成系统失稳,该问题以往研究较少。针对翼型时滞气弹控制问题,设计了一种基于BRGWO算法...气弹控制系统的驱动器、闭环信号回路在实际中会存在时滞环节,由于气弹敏感性和环境复杂性,时滞会引起控制信号迟延并导致气弹控制极速恶化、甚至造成系统失稳,该问题以往研究较少。针对翼型时滞气弹控制问题,设计了一种基于BRGWO算法和改进型滤波Smith的最优气弹控制方法。首先,引入二阶滤波器改进Smith预估器,设计了翼型气弹控制器;然后,创新设计了一种双向随机灰狼优化算法(bidirectional random grey wolf optimization, BGWO),提高了时滞下气弹控制参数的全局寻优能力,该算法改进了不同等级灰狼的狩猎策略,提高跳出非理想值机率、避免陷入局部最优。利用最小增益原理,在理论上证明了闭环系统稳定性。仿真结果表明,对比传统智能优化算法(如遗传算法、灰狼优化算法)和多种已有控制器(经典Smith、PI-PD型Smith和传统滤波Smith预估器),该方法具有更强的时滞补偿能力和更优的气弹控制性能,在不确定时滞、不确定风速、刚度变化和驱动干扰等算例下,保持了优良的时滞气弹控制效果,具有较强的鲁棒性。展开更多
氨法脱硫系统存在滞后大、非线性和实时负荷跟踪性差等问题。针对该问题设计的Smith预估控制器通过补偿延迟时间提高了系统的实时性。但通常采用试凑法来设定系统中的PID(Proportion Integral Differential)参数,导致系统稳定性较差。...氨法脱硫系统存在滞后大、非线性和实时负荷跟踪性差等问题。针对该问题设计的Smith预估控制器通过补偿延迟时间提高了系统的实时性。但通常采用试凑法来设定系统中的PID(Proportion Integral Differential)参数,导致系统稳定性较差。文中提出模糊PID参数自适应整定控制方法,通过模糊控制器求得PID的3个参数的调整值,自适应地调整PID参数,将SNO_(x)的浓度控制在预设值附近。与传统阶跃信号判断控制效果不同,文中所提方法以实时的负荷数据来进行模型仿真,数据仿真结果也证明了Smith预估模糊PID控制器的可行性。系统稳定时SNO_(x)浓度与预设值的误差在0.5 ppm以内,缩短了调节时间,表明所提方法改善了氨法脱硫控制系统的实时跟踪性,实现了快准稳的脱硫控制性能。展开更多
为实现水培营养液水质参数的高效、精确控制,减少设备供能产生的碳排量,构建了一个基于粒子群优化(Particle Swarm Optimization,PSO)算法和最大功率点跟踪(Maximum Power Point Tracking,MPPT)算法的水培智能控制系统。用PSO算法优化...为实现水培营养液水质参数的高效、精确控制,减少设备供能产生的碳排量,构建了一个基于粒子群优化(Particle Swarm Optimization,PSO)算法和最大功率点跟踪(Maximum Power Point Tracking,MPPT)算法的水培智能控制系统。用PSO算法优化模糊控制器的量化、比例因子,加入Smith预估器补偿反馈时延,对pH为4.5、电导率(Electrical Conductivity,EC)为0 mS/cm的营养液进行精确调控。经过优化,分别在44 s和43 s后达到预设值,并能维持稳定状态。建立光伏发电模块,引入MPPT算法,缩短跟踪时长至0.04 s。结果表明,该系统能提高营养液水质参数的调节精度,缩短控制时长,增强水培环境的稳定性;同时,能提升发电效率,实现节能减排。展开更多
基金supported by the National High-Tech Research and Development Program of China (No.2003AA33G010)
文摘The simplified transfer function diagram block for a monitor automatic gauge control (Mon-AGC) system of strip steel rolling process was investigated. The new notion of strip sample length was given. In this way, the delay time varying with the rolling speed was evaded. After a Smith predictor was used to monitor the AGC system, the control laws were deduced for both proportional and integral regulators. The control strategies showed that by choosing the controller parameter P=∞ for both control algo- rithms each regulator could compensate the whole strip gage error in the first control step. The result shows that the integral algo- rithm is more controllable for the system regulating process and has a better steady-state precision than the proportional regulator. Compared with the traditional control strategy, the new control laws have a faster response speed and a hieher steadv-state precision.
基金supported by National Natural Science Foundation of China (Grant No. 604740044)Hebei Provincial Natural Science Foundation of China (Grant No. E2004000221)
文摘Flatness is one of the most important criterion factors to evaluate the quality of the steel strip. To improve the strip' s flatness quality, the most frequently used methodology is to employ the closed-loop automatic shape control system. However, in the shape control system, the shape-meter is always installed at the down way of the exit of the cold rolling mill and can not sense the changes of the strip flatness in the rolling gap directly. This kind of installation results in the delay of the feedback in the control system. Therefore, the stability and response performance of the system are strongly affected by the delay. At present, there is still no mature way to design controllers for systems with time delay. Although the conventional PID controller used in most practical applications has the capability to compensate the delay, the effect of the compensation is limited, especially for the systems with long time delay. Smith predictor, as a compensator for solving this problem, is now widely used in industry systems. However, the request of highly precise model of the system and the poor adaptive performance to the changes of related parameters limit the application of the Smith predictor in practice. In order to overcome the drawbacks of the Smith predictor, a new Smith predictor based on single neural network PID (SNN-PID) is proposed. Because the single neural network is employed into the Smith predictor to improve the controller's self-adaptability, the adaptive capability to the varying parameters of the system is improved. Meanwhile, for the purpose of solving the problems such as time-consuming and complicated calculation of the neural networks in real time, the learning coefficient of neural network is divided into several stages as usually done in expert control system. Therefore, the control system can obtain fast response due to the improved calculation speed of the neural networks. In order to validate the performance of the proposed controller, the experiment is conducted on the shape control system in a 300 mm four-high reversing cold rolling mill. The experimental results show that the SNN-PID with Smith predictor controller can effectively compensate the delay effects and achieve better control performance than the conventional PID controller.
基金support by the Central Power Research Institute,India(CPRI/RD/RSOP/GRANT/2015)
文摘Inter-area low frequency oscillation in power system is one of the major problems for bulk power transmission through weak tie lines.Use of wide-area signal is more effective than the local area signal in damping out the inter-area oscillations.Wide area measurement system(WAMS)is convenient to transmit the wide area signal through the communication channel to the remote location.Communication failure is one of the disastrous phenomena in a communication channel.In this paper,a dual input single output(DISO)Hm controller is designed to build the control resiliency by employing two highest observability ranking wide area signals with respect to the critical damping inter-area mode.The proposed controller can provide sufficient damping to the system and also the system remains stabilized if one of the wide-area signals is lost.The time delay is an unwanted phenomenon that degrades the performance of the controllers.The unified Smith predictor approach is used to design a Hm controller to handle the time delay.Kundur's two-area and IEEE-39 bus test systems are considered to verify the effectiveness of the proposed controller.From the simulation results,it is verified that,the proposed controller provides excellent damping performance at normal communication and improves the controller resiliency to counteract the communication failure.
基金This project was supported by the National Science Foundation for Distinguished Young Scholars (60625302)National "973" Basic Research Program of China (2002CB312200)+1 种基金National "863" High Technology Development Program (20060104Z1081) Major State Basic Research Development Program of Shanghai (05DJ14002).
文摘A robust tuning method for ο^Astroem's two-degree of Freedom Modified Smith Predictor (MSP) is proposed, and it can achieve the fast setpoint and load disturbance responses independently. The tuning rules may meet the requirements within a certain delay margin according to the robustness theory. The simulation results illustrate that the tuning method is efficient compared with other controllers. Finally, the MSP controller is applied to the 15L batch fermentation system for controlling the temperature in bioreactor, and the experiment results further verify that the robust tuning rules may achieve good performance.
文摘气弹控制系统的驱动器、闭环信号回路在实际中会存在时滞环节,由于气弹敏感性和环境复杂性,时滞会引起控制信号迟延并导致气弹控制极速恶化、甚至造成系统失稳,该问题以往研究较少。针对翼型时滞气弹控制问题,设计了一种基于BRGWO算法和改进型滤波Smith的最优气弹控制方法。首先,引入二阶滤波器改进Smith预估器,设计了翼型气弹控制器;然后,创新设计了一种双向随机灰狼优化算法(bidirectional random grey wolf optimization, BGWO),提高了时滞下气弹控制参数的全局寻优能力,该算法改进了不同等级灰狼的狩猎策略,提高跳出非理想值机率、避免陷入局部最优。利用最小增益原理,在理论上证明了闭环系统稳定性。仿真结果表明,对比传统智能优化算法(如遗传算法、灰狼优化算法)和多种已有控制器(经典Smith、PI-PD型Smith和传统滤波Smith预估器),该方法具有更强的时滞补偿能力和更优的气弹控制性能,在不确定时滞、不确定风速、刚度变化和驱动干扰等算例下,保持了优良的时滞气弹控制效果,具有较强的鲁棒性。
文摘氨法脱硫系统存在滞后大、非线性和实时负荷跟踪性差等问题。针对该问题设计的Smith预估控制器通过补偿延迟时间提高了系统的实时性。但通常采用试凑法来设定系统中的PID(Proportion Integral Differential)参数,导致系统稳定性较差。文中提出模糊PID参数自适应整定控制方法,通过模糊控制器求得PID的3个参数的调整值,自适应地调整PID参数,将SNO_(x)的浓度控制在预设值附近。与传统阶跃信号判断控制效果不同,文中所提方法以实时的负荷数据来进行模型仿真,数据仿真结果也证明了Smith预估模糊PID控制器的可行性。系统稳定时SNO_(x)浓度与预设值的误差在0.5 ppm以内,缩短了调节时间,表明所提方法改善了氨法脱硫控制系统的实时跟踪性,实现了快准稳的脱硫控制性能。