Impacts of Quaternary environmental changes on mammal faunas of central Asia remain poorly understood due to a lack of comprehensive phylogeographic sampling for most species.To help address this knowledge gap,we cond...Impacts of Quaternary environmental changes on mammal faunas of central Asia remain poorly understood due to a lack of comprehensive phylogeographic sampling for most species.To help address this knowledge gap,we conducted the most extensive molecular analysis to date of the long-tailed ground squirrel (Urocitellus undulatus Pallas 1778) in Mongolia,a country that comprises the southern core of this species' range.Drawing on material from recent collaborative field expeditions,we genotyped 128 individuals at two mitochondrial genes (cytochrome b and cytochrome oxidase Ⅰ;1797 bp total).Phylogenetic inference supports the existence of two deeply divergent infraspecific lineages (corresponding to subspecies U.u.undulatus and U.u.eversmanni),a result in agreement with previous molecular investigations but discordant with patterns of range-wide craniometric and external phenotypic variation.In the widespread western eversmanni lineage,we recovered geographically-associated clades from the:(a) Khangai,(b) Mongolian Altai,and (c) Govi Altai mountain ranges.Phylogeographic structure in U.u.eversmanni is consistent with an isolation-by-distance model;however,genetic distances are significantly lower than among subspecies,and intra-clade relationships are largely unresolved.The latter patterns,as well as the relatively higher nucleotide polymorphism of populations from the Great Lakes Depression of northwestern Mongolia,suggest a history of range shifts into these lowland areas in response to Pleistocene glaciation and environmental change,followed by upslope movements and mitochondrial lineage sorting with Holocene aridification.Our study illuminates possible historical mechanisms responsible for U.undulatus genetic structure and contributes to a framework for ongoing exploration of mammalian response to past and present climate change in central Asia.展开更多
The Great Green Wall Initiative(GGWI) has an overall objective of fighting desert encroachment through proven practices of sustainable management of land, and the reinforcement and protection of natural resources an...The Great Green Wall Initiative(GGWI) has an overall objective of fighting desert encroachment through proven practices of sustainable management of land, and the reinforcement and protection of natural resources and systems of production and transformation, while also ensuring socio-economic development of local communities through multi-purpose activity platforms. The activities described in the present study are designed to accomplish several goals:(1) generate wealth,(2) strengthen access to basic social services,(3) manage the transition to a green economy as a means of creating suitable conditions for the emergence of rural production centers,(4) integrate sustainable development in order to eradicate poverty and food insecurity, and(5) strengthen adaptation and resilience capacities of local populations. The present study was undertaken on the basis of a wide variety of available publications and documentation, including articles and scientific papers, thesis, meeting summaries and reports, concerning the implementation of the Great Green Wall Initiative/GGWI in Senegal.展开更多
基金funded primarily by grants from the National Science Foundation(USADBI-9411976 supplement(1999),DEB-0717214(2009-2012),DEB-1258010(2015-2016))+2 种基金B.S.M. was partially supported by a Peter Buck Predoctoral Fellowship during the 2015 Mongolian expeditionsupported by the National Science Foundation(DEB-1258010)the American Society of Mammalogists(ASM Fellowship to B.S.M.)
文摘Impacts of Quaternary environmental changes on mammal faunas of central Asia remain poorly understood due to a lack of comprehensive phylogeographic sampling for most species.To help address this knowledge gap,we conducted the most extensive molecular analysis to date of the long-tailed ground squirrel (Urocitellus undulatus Pallas 1778) in Mongolia,a country that comprises the southern core of this species' range.Drawing on material from recent collaborative field expeditions,we genotyped 128 individuals at two mitochondrial genes (cytochrome b and cytochrome oxidase Ⅰ;1797 bp total).Phylogenetic inference supports the existence of two deeply divergent infraspecific lineages (corresponding to subspecies U.u.undulatus and U.u.eversmanni),a result in agreement with previous molecular investigations but discordant with patterns of range-wide craniometric and external phenotypic variation.In the widespread western eversmanni lineage,we recovered geographically-associated clades from the:(a) Khangai,(b) Mongolian Altai,and (c) Govi Altai mountain ranges.Phylogeographic structure in U.u.eversmanni is consistent with an isolation-by-distance model;however,genetic distances are significantly lower than among subspecies,and intra-clade relationships are largely unresolved.The latter patterns,as well as the relatively higher nucleotide polymorphism of populations from the Great Lakes Depression of northwestern Mongolia,suggest a history of range shifts into these lowland areas in response to Pleistocene glaciation and environmental change,followed by upslope movements and mitochondrial lineage sorting with Holocene aridification.Our study illuminates possible historical mechanisms responsible for U.undulatus genetic structure and contributes to a framework for ongoing exploration of mammalian response to past and present climate change in central Asia.
基金National Natural Science Foundation of China(31361140360)Global Dryland Ecosystem Programme supported by the International Partnership Program of Chinese Academy of Sciences(121311KYSB20170004)
文摘The Great Green Wall Initiative(GGWI) has an overall objective of fighting desert encroachment through proven practices of sustainable management of land, and the reinforcement and protection of natural resources and systems of production and transformation, while also ensuring socio-economic development of local communities through multi-purpose activity platforms. The activities described in the present study are designed to accomplish several goals:(1) generate wealth,(2) strengthen access to basic social services,(3) manage the transition to a green economy as a means of creating suitable conditions for the emergence of rural production centers,(4) integrate sustainable development in order to eradicate poverty and food insecurity, and(5) strengthen adaptation and resilience capacities of local populations. The present study was undertaken on the basis of a wide variety of available publications and documentation, including articles and scientific papers, thesis, meeting summaries and reports, concerning the implementation of the Great Green Wall Initiative/GGWI in Senegal.