In order to study the bending behavior of aluminum alloy 7050 thick plate during snake hot rolling, several coupled thermo-mechanical finite element(FE) models were established. Effects of different initial thicknesse...In order to study the bending behavior of aluminum alloy 7050 thick plate during snake hot rolling, several coupled thermo-mechanical finite element(FE) models were established. Effects of different initial thicknesses, pass reductions, speed ratios and offset distances on the bending value of the plate were analyzed. ‘Quasi smooth plate' and optimum offset distance were defined and quasi smooth plate could be acquired by adjusting offset distance, and then bending control equation was fitted. The results show that bending value of the plate as well as the extent of the increase grows with the increase of pass reduction and decrease of initial thickness; the bending value firstly increases and then keeps steady with the ascending speed ratio; the bending value can be reduced by enlarging the offset distance. The optimum offset distance varies for different rolling parameters and it is augmented with the increase of pass reduction and speed ratio and the decrease of initial thickness. A proper offset distance for different rolling parameters can be calculated by the bending control equation and this equation can be a guidance to acquire a quasi smooth plate. The FEM results agree well with experimental results.展开更多
We propose a new functional single index model, which called dynamic single-index model for functional data, or DSIM, to efficiently perform non-linear and dynamic relationships between functional predictor and functi...We propose a new functional single index model, which called dynamic single-index model for functional data, or DSIM, to efficiently perform non-linear and dynamic relationships between functional predictor and functional response. The proposed model naturally allows for some curvature not captured by the ordinary functional linear model. By using the proposed two-step estimating algorithm, we develop the estimates for both the link function and the regression coefficient function, and then provide predictions of new response trajectories. Besides the asymptotic properties for the estimates of the unknown functions, we also establish the consistency of the predictions of new response trajectories under mild conditions. Finally, we show through extensive simulation studies and a real data example that the proposed DSIM can highly outperform existed functional regression methods in most settings.展开更多
基金Projects(2012CB619505,2010CB731703)supported by the National Basic Research Program of ChinaProject(CX2013B065)supported by Hunan Provincial Innovation Foundation for Postgraduate,China+1 种基金Project(51405520)supported by the National Natural Science Foundation of ChinaProject(zzyjkt2013-06B)supported by the State Key Laboratory of High Performance Complex Manufacturing(Central South University),China
文摘In order to study the bending behavior of aluminum alloy 7050 thick plate during snake hot rolling, several coupled thermo-mechanical finite element(FE) models were established. Effects of different initial thicknesses, pass reductions, speed ratios and offset distances on the bending value of the plate were analyzed. ‘Quasi smooth plate' and optimum offset distance were defined and quasi smooth plate could be acquired by adjusting offset distance, and then bending control equation was fitted. The results show that bending value of the plate as well as the extent of the increase grows with the increase of pass reduction and decrease of initial thickness; the bending value firstly increases and then keeps steady with the ascending speed ratio; the bending value can be reduced by enlarging the offset distance. The optimum offset distance varies for different rolling parameters and it is augmented with the increase of pass reduction and speed ratio and the decrease of initial thickness. A proper offset distance for different rolling parameters can be calculated by the bending control equation and this equation can be a guidance to acquire a quasi smooth plate. The FEM results agree well with experimental results.
基金supported by National Natural Science Foundation of China (Grant No. 11271080)
文摘We propose a new functional single index model, which called dynamic single-index model for functional data, or DSIM, to efficiently perform non-linear and dynamic relationships between functional predictor and functional response. The proposed model naturally allows for some curvature not captured by the ordinary functional linear model. By using the proposed two-step estimating algorithm, we develop the estimates for both the link function and the regression coefficient function, and then provide predictions of new response trajectories. Besides the asymptotic properties for the estimates of the unknown functions, we also establish the consistency of the predictions of new response trajectories under mild conditions. Finally, we show through extensive simulation studies and a real data example that the proposed DSIM can highly outperform existed functional regression methods in most settings.