The transforming growth factor-β(TGF-β)family controls embryogenesis,stem cell differentiation,and tissue homeostasis.However,how post-translation modifications contribute to fine-tuning of TGF-βfamily signaling re...The transforming growth factor-β(TGF-β)family controls embryogenesis,stem cell differentiation,and tissue homeostasis.However,how post-translation modifications contribute to fine-tuning of TGF-βfamily signaling responses is not well understood.Inhibitory(I)-Smads can antagonize TGF-β/Smad signaling by recruiting Smurf E3 ubiquitin ligases to target the active TGF-βreceptor for proteasomal degradation.A proteomic interaction screen identified Vpr binding protein(VprBP)as novel binding partner of Smad7.Mis-expression studies revealed that VprBP negatively controls Smad2 phosphorylation,Smad2–Smad4 interaction,as well as TGF-βtarget gene expression.VprBP was found to promote Smad7–Smurf1–TβRI complex formation and induce proteasomal degradation of TGF-βtype I receptor(TβRI).Moreover,VprBP appears to stabilize Smurf1 by suppressing Smurf1 poly-ubiquitination.In multiple adult and mouse embryonic stem cells,depletion of VprBP promotes TGF-βor Activin-induced responses.In the mouse embryo VprBP expression negatively correlates with mesoderm marker expression,and VprBP attenuated mesoderm induction during zebrafish embryogenesis.Our findings thereby uncover a novel regulatory mechanism by which Smurf1 controls the TGF-βand Activin cascade and identify VprBP as a critical determinant of embryonic mesoderm induction.展开更多
The tumor suppressor p53 locates at the key point of cell growth or apoptosis balance, and the expression level of p53 is tightly controlled by ubiquitin ligases including MDM2. Upon DNA damage stresses, p53 was accum...The tumor suppressor p53 locates at the key point of cell growth or apoptosis balance, and the expression level of p53 is tightly controlled by ubiquitin ligases including MDM2. Upon DNA damage stresses, p53 was accumulated and activated, leading to cell cycle arrest or apoptosis. We previously showed that Smad ubiquitylation regulatory factor 1/2 (Smurf1/2) promotes p53 degradation by interacting with and stabilizing MDM2, and consequently enhancing MDM2-mediated ubiquitylation of p53. However, it is unclear how the Smurf1-MDM2 interaction is regulated in response to DNA damage stress. Here, we show that in response to etoposide treatment Smurf1 dissociates from MDM2, resulting in MDM2 destabilization and p53 accumulation. The negative regulation of Smurf1 on apoptosis is released. Notably, this dissociation is a slow process rather than a rapid response, implicating high expression of Smurf1 might confer the resistance against p53 activation. Consistent with this notion, we observed that Smurf1/2 ligases are highly expressed in colon cancer, esophageal squamous cell carcinoma and pancreatic cancer tissues, suggesting the oncogenic tendency of Smurf1/2.展开更多
基金This research was supported by Cancer Genomics Centre Netherlands and a grant from the National Natural Science Foundation of China(31471315).
文摘The transforming growth factor-β(TGF-β)family controls embryogenesis,stem cell differentiation,and tissue homeostasis.However,how post-translation modifications contribute to fine-tuning of TGF-βfamily signaling responses is not well understood.Inhibitory(I)-Smads can antagonize TGF-β/Smad signaling by recruiting Smurf E3 ubiquitin ligases to target the active TGF-βreceptor for proteasomal degradation.A proteomic interaction screen identified Vpr binding protein(VprBP)as novel binding partner of Smad7.Mis-expression studies revealed that VprBP negatively controls Smad2 phosphorylation,Smad2–Smad4 interaction,as well as TGF-βtarget gene expression.VprBP was found to promote Smad7–Smurf1–TβRI complex formation and induce proteasomal degradation of TGF-βtype I receptor(TβRI).Moreover,VprBP appears to stabilize Smurf1 by suppressing Smurf1 poly-ubiquitination.In multiple adult and mouse embryonic stem cells,depletion of VprBP promotes TGF-βor Activin-induced responses.In the mouse embryo VprBP expression negatively correlates with mesoderm marker expression,and VprBP attenuated mesoderm induction during zebrafish embryogenesis.Our findings thereby uncover a novel regulatory mechanism by which Smurf1 controls the TGF-βand Activin cascade and identify VprBP as a critical determinant of embryonic mesoderm induction.
基金supported by the National Natural Science Foundation of China (31100554, 30800177)the National Basic Research Program of China (2007CB914601, 2011CB910802)
文摘The tumor suppressor p53 locates at the key point of cell growth or apoptosis balance, and the expression level of p53 is tightly controlled by ubiquitin ligases including MDM2. Upon DNA damage stresses, p53 was accumulated and activated, leading to cell cycle arrest or apoptosis. We previously showed that Smad ubiquitylation regulatory factor 1/2 (Smurf1/2) promotes p53 degradation by interacting with and stabilizing MDM2, and consequently enhancing MDM2-mediated ubiquitylation of p53. However, it is unclear how the Smurf1-MDM2 interaction is regulated in response to DNA damage stress. Here, we show that in response to etoposide treatment Smurf1 dissociates from MDM2, resulting in MDM2 destabilization and p53 accumulation. The negative regulation of Smurf1 on apoptosis is released. Notably, this dissociation is a slow process rather than a rapid response, implicating high expression of Smurf1 might confer the resistance against p53 activation. Consistent with this notion, we observed that Smurf1/2 ligases are highly expressed in colon cancer, esophageal squamous cell carcinoma and pancreatic cancer tissues, suggesting the oncogenic tendency of Smurf1/2.