The electromigration reliability on Sn–10Bi solder joints is investigated and the performance is tried to be improved with trace Zn addition in solder by depressing the growth of interfacial intermetallic compounds(I...The electromigration reliability on Sn–10Bi solder joints is investigated and the performance is tried to be improved with trace Zn addition in solder by depressing the growth of interfacial intermetallic compounds(IMCs)under electromigration.The electromigration test was realized on Cu/solder/Cu linear specimens at a current density of 1.0×10^(4) A/cm^(2) with different stressing time.It was found that Bi atoms in Cu/Sn-10Bi/Cu solder joint were driven towards anode side under current driving force and then accumulated at anode interface with current stressing time increasing.The thickness and growth rate of Cu_(6)Sn_(5) IMCs at anode interface were obviously larger than those at cathode side due to polarity effect.The addition of 0.2 wt.%Zn inhibited the migration of Bi atoms during the electromigration process,and the composition of interfacial IMCs was transformed into Cu_(6)(Sn,Zn)_(5),which played as a diffusion barrier to effectively reduce the asymmetric growth of IMCs and the consumption of Cu substrate during electromigation.展开更多
Zinc tin oxide(ZTO) thin films, with zinc acetate and tributyltin chloride as raw materials, were deposited on glass substrates by the method of metal organic chemical vapor deposition(MOCVD). The crystallization,...Zinc tin oxide(ZTO) thin films, with zinc acetate and tributyltin chloride as raw materials, were deposited on glass substrates by the method of metal organic chemical vapor deposition(MOCVD). The crystallization, microstructure and optical properties were investigated by scanning electronic microscope(SEM),X-ray diffraction(XRD) and ultraviolet-visible(UV-Vis)spectrophotometer. The results show that with the increase in Sn/Zn ratio, the crystal changes from wurtzite to rutile phase. When the ratio reaches 11:18,the intensity of Zn2SnO4 peaks appears to be the strongest and the optical band gap is about 3.27 eV. Calculated by the envelope method, the thickness of the ZTO thin films is 713.24 nm.Measured by UV-Vis spectrophotometer, the transmittance of the ZTO thin films reaches up to 80% in the wavelength range of 400-1000 nm when the Sn/Zn ratio is 7:18.展开更多
Particle reinforced Sn-Zn based composite solders were obtained by adding Cu powders to Sn-9Zn melts. The microstructure analysis reveals that in situ CusZn8 particles are formed and distributed uniformly in the compo...Particle reinforced Sn-Zn based composite solders were obtained by adding Cu powders to Sn-9Zn melts. The microstructure analysis reveals that in situ CusZn8 particles are formed and distributed uniformly in the composite solders. The strength and plasticity of the composite solders were improved, and creep resistance was considerably enhanced. The wettability of these composite solders is also better than that of Sn-9Zn.展开更多
The potential of using a hypoeutectic, instead of eutectic, Sn-Zn alloy as a lead-free solder has been discussed. The nonequilibrium melting behaviors of a series of Sn-Zn alloys were examined by differential thermal ...The potential of using a hypoeutectic, instead of eutectic, Sn-Zn alloy as a lead-free solder has been discussed. The nonequilibrium melting behaviors of a series of Sn-Zn alloys were examined by differential thermal analysis. It was found that at a heating rate of 5℃/min, Sn-6.SZn exhibited no melting range. Dipping and spreading tests were carried out to characterize the wettability of Sn-Zn alloys on Cu. Both tests exhibited that Sn-6.5Zn has significantly better wettability on Cu than Sn-9Zn. The reaction layers formed during the spreading tests were examined. When the Zn concentration fell between 2.5wt%-9wt%, two reaction layers were formed at the interface, a thick and flat Cu5Zn8 adjacent to Cu and a thin and irregular Cu-Zn-Sn layer adjacent to the alloy. Only a Cu0Sn5 layer was formed when the Zn concentration decreased to 0.5wt%. The total thickness of the reaction layer(s) between the alloy and Cu was found to increase linearly with the Zn concentration.展开更多
The co-continuous(HA+β-TCP)/Zn−3Sn composite was fabricated via vacuum casting-infiltration method.The microstructure,mechanical properties,corrosion behaviors,and hemolysis ratio of the composite were studied by sca...The co-continuous(HA+β-TCP)/Zn−3Sn composite was fabricated via vacuum casting-infiltration method.The microstructure,mechanical properties,corrosion behaviors,and hemolysis ratio of the composite were studied by scanning electron microscope,X-ray diffractometer,mechanical testing,electrochemical test,immersion test,and ultraviolet spectrophotometry.The results indicate that Zn−3Sn alloy infiltrated into porous HA+β-TCP scaffold,which resulted in the formation of a compact(HA+β-TCP)/Zn−3Sn co-continuous composite,without any reaction layer between the Zn−3Sn alloy and the HA+β-TCP scaffold.The compressive strength of the composite was equal to about 3/4 that of Zn−3Sn alloy bulk.The corrosion rate of composite in simulated body fluid solution was slightly higher than that of Zn−3Sn alloy bulk.The main corrosion product on the composite surface was Zn(OH)2.The hemolysis rate of the composite was lower than that of Zn–3Sn alloy bulk and exhibited superior blood compatibility.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.51875269)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX23_2178).
文摘The electromigration reliability on Sn–10Bi solder joints is investigated and the performance is tried to be improved with trace Zn addition in solder by depressing the growth of interfacial intermetallic compounds(IMCs)under electromigration.The electromigration test was realized on Cu/solder/Cu linear specimens at a current density of 1.0×10^(4) A/cm^(2) with different stressing time.It was found that Bi atoms in Cu/Sn-10Bi/Cu solder joint were driven towards anode side under current driving force and then accumulated at anode interface with current stressing time increasing.The thickness and growth rate of Cu_(6)Sn_(5) IMCs at anode interface were obviously larger than those at cathode side due to polarity effect.The addition of 0.2 wt.%Zn inhibited the migration of Bi atoms during the electromigration process,and the composition of interfacial IMCs was transformed into Cu_(6)(Sn,Zn)_(5),which played as a diffusion barrier to effectively reduce the asymmetric growth of IMCs and the consumption of Cu substrate during electromigation.
基金supported by the Jiangsu Province Industry–University–Research Project,China(No.BY20221160)the Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(No.KYCX22_3798)+2 种基金the National Natural Science Foundation of China(No.52275339)the Key Research and Development Plan of the Ministry of Science and Technology,China(No.2023YFE0200400)the Science and Technology Project of Jiangsu Province,China(No.BZ2021053)。
基金financially supported by the National Natural Science Foundation of China(No.51342006)
文摘Zinc tin oxide(ZTO) thin films, with zinc acetate and tributyltin chloride as raw materials, were deposited on glass substrates by the method of metal organic chemical vapor deposition(MOCVD). The crystallization, microstructure and optical properties were investigated by scanning electronic microscope(SEM),X-ray diffraction(XRD) and ultraviolet-visible(UV-Vis)spectrophotometer. The results show that with the increase in Sn/Zn ratio, the crystal changes from wurtzite to rutile phase. When the ratio reaches 11:18,the intensity of Zn2SnO4 peaks appears to be the strongest and the optical band gap is about 3.27 eV. Calculated by the envelope method, the thickness of the ZTO thin films is 713.24 nm.Measured by UV-Vis spectrophotometer, the transmittance of the ZTO thin films reaches up to 80% in the wavelength range of 400-1000 nm when the Sn/Zn ratio is 7:18.
基金Funded by the Major Scientific and Technical Project Program of Jiangxi Province (No.2005008) the Science & Technology Project of Education Department of Jiangxi Province (No.[2007]53 and No.GJJ09416)
文摘Particle reinforced Sn-Zn based composite solders were obtained by adding Cu powders to Sn-9Zn melts. The microstructure analysis reveals that in situ CusZn8 particles are formed and distributed uniformly in the composite solders. The strength and plasticity of the composite solders were improved, and creep resistance was considerably enhanced. The wettability of these composite solders is also better than that of Sn-9Zn.
文摘The potential of using a hypoeutectic, instead of eutectic, Sn-Zn alloy as a lead-free solder has been discussed. The nonequilibrium melting behaviors of a series of Sn-Zn alloys were examined by differential thermal analysis. It was found that at a heating rate of 5℃/min, Sn-6.SZn exhibited no melting range. Dipping and spreading tests were carried out to characterize the wettability of Sn-Zn alloys on Cu. Both tests exhibited that Sn-6.5Zn has significantly better wettability on Cu than Sn-9Zn. The reaction layers formed during the spreading tests were examined. When the Zn concentration fell between 2.5wt%-9wt%, two reaction layers were formed at the interface, a thick and flat Cu5Zn8 adjacent to Cu and a thin and irregular Cu-Zn-Sn layer adjacent to the alloy. Only a Cu0Sn5 layer was formed when the Zn concentration decreased to 0.5wt%. The total thickness of the reaction layer(s) between the alloy and Cu was found to increase linearly with the Zn concentration.
基金the National Natural Science Foundation of China(No.51101039)the Fundamental Research Funds for the Central Universities,China(No.3072020CFT0702).
文摘The co-continuous(HA+β-TCP)/Zn−3Sn composite was fabricated via vacuum casting-infiltration method.The microstructure,mechanical properties,corrosion behaviors,and hemolysis ratio of the composite were studied by scanning electron microscope,X-ray diffractometer,mechanical testing,electrochemical test,immersion test,and ultraviolet spectrophotometry.The results indicate that Zn−3Sn alloy infiltrated into porous HA+β-TCP scaffold,which resulted in the formation of a compact(HA+β-TCP)/Zn−3Sn co-continuous composite,without any reaction layer between the Zn−3Sn alloy and the HA+β-TCP scaffold.The compressive strength of the composite was equal to about 3/4 that of Zn−3Sn alloy bulk.The corrosion rate of composite in simulated body fluid solution was slightly higher than that of Zn−3Sn alloy bulk.The main corrosion product on the composite surface was Zn(OH)2.The hemolysis rate of the composite was lower than that of Zn–3Sn alloy bulk and exhibited superior blood compatibility.