The effect of Sb content on the properties of Sn-Bi solders was studied. The nonequilibrium melting behaviors of a series of Sn-Bi-Sb solders were examined by differential scanning calorimetry (DSC). The spreading t...The effect of Sb content on the properties of Sn-Bi solders was studied. The nonequilibrium melting behaviors of a series of Sn-Bi-Sb solders were examined by differential scanning calorimetry (DSC). The spreading test was carried out to characterize the wettability of Sn-Bi-Sb solders on Cu substrate. The mechanical properties of the solders/Cu joints were evaluated. The results show that the ternary alloy solders contain eutectic structure resulting from quasi-peritetic reaction. With the increase of Sb content, the amount of the eutectic structure increases. At a heating rate of 5 ℃/min, Sn-Bi-Sb alloys exhibit a higher melting point and a wider melting range. A small amount of Sb has an impact on the wettability of Sn-Bi solders. The reaction layers form during spreading process. Sb is detected in the reaction layer while Bi is not detected. The total thickness of reaction layer between solder and Cu increases with the increase of the Sb content. The shear strength of the Sn-Bi-Sb solders increases as the Sb content increases.展开更多
Interfacial reaction, tensile strength and creep resistance of Sn-58Bi-x Zn(x=0, 0.7, mass fraction, %) solder samples during liquid-state aging were investigated. The coarsening of Bi and the growth of Cu-Sn intermet...Interfacial reaction, tensile strength and creep resistance of Sn-58Bi-x Zn(x=0, 0.7, mass fraction, %) solder samples during liquid-state aging were investigated. The coarsening of Bi and the growth of Cu-Sn intermetallic compounds(IMCs) in Sn-58Bi-0.7Zn solder sample were both effectively suppressed. With the addition of 0.7% Zn, ultimate tensile strengths(UTSs) of the Sn-58 Bi solder slabs were respectively increased by 6.05% and 5.50% after reflow soldering and liquid-state aging, and those of the Cu/Sn-58Bi/Cu solder joints were also increased by 21.51% and 29.27%, respectively. The increase in strengthening effect of Cu/Sn-58Bi-x Zn/Cu solder joints could be attributed to the fracture surface which was changed from the Cu/IMC interface to the IMC/solder interface due to the finer Bi grain. Nanoindentation results revealed that the creep behavior of Sn-58Bi-0.7Zn solder was significantly improved compared with that of the eutectic Sn-58 Bi solder after reflow soldering and liquid-state aging.展开更多
基金Project(51004039)supported by the National Natural Science Foundation of ChinaProject(2012713)supported by the Cooperation Promoting Foundation in Science and Technology of Shaoxing City,China
文摘The effect of Sb content on the properties of Sn-Bi solders was studied. The nonequilibrium melting behaviors of a series of Sn-Bi-Sb solders were examined by differential scanning calorimetry (DSC). The spreading test was carried out to characterize the wettability of Sn-Bi-Sb solders on Cu substrate. The mechanical properties of the solders/Cu joints were evaluated. The results show that the ternary alloy solders contain eutectic structure resulting from quasi-peritetic reaction. With the increase of Sb content, the amount of the eutectic structure increases. At a heating rate of 5 ℃/min, Sn-Bi-Sb alloys exhibit a higher melting point and a wider melting range. A small amount of Sb has an impact on the wettability of Sn-Bi solders. The reaction layers form during spreading process. Sb is detected in the reaction layer while Bi is not detected. The total thickness of reaction layer between solder and Cu increases with the increase of the Sb content. The shear strength of the Sn-Bi-Sb solders increases as the Sb content increases.
基金Project(51074112)supported by the National Natural Science Foundation of China
文摘Interfacial reaction, tensile strength and creep resistance of Sn-58Bi-x Zn(x=0, 0.7, mass fraction, %) solder samples during liquid-state aging were investigated. The coarsening of Bi and the growth of Cu-Sn intermetallic compounds(IMCs) in Sn-58Bi-0.7Zn solder sample were both effectively suppressed. With the addition of 0.7% Zn, ultimate tensile strengths(UTSs) of the Sn-58 Bi solder slabs were respectively increased by 6.05% and 5.50% after reflow soldering and liquid-state aging, and those of the Cu/Sn-58Bi/Cu solder joints were also increased by 21.51% and 29.27%, respectively. The increase in strengthening effect of Cu/Sn-58Bi-x Zn/Cu solder joints could be attributed to the fracture surface which was changed from the Cu/IMC interface to the IMC/solder interface due to the finer Bi grain. Nanoindentation results revealed that the creep behavior of Sn-58Bi-0.7Zn solder was significantly improved compared with that of the eutectic Sn-58 Bi solder after reflow soldering and liquid-state aging.