The effects of rapid solidification on the microstructure and melting behavior of the Sn-8Zn-3Bi alloy were studied. The evolution of the microstructuraI characteristics of the solder/Cu joint after an isothermal agin...The effects of rapid solidification on the microstructure and melting behavior of the Sn-8Zn-3Bi alloy were studied. The evolution of the microstructuraI characteristics of the solder/Cu joint after an isothermal aging at 150 ℃ was also analyzed to evaluate the interconnect reliability. Results showed that the Bi in Sn-8Zn-3Bi solder alloy completely dissolved in the Sn matrix with a dendritic structure after rapid solidification. Compared with as-solidified Sn-8Zn-3Bi solder alloy, the melting temperature of the rapid solidified alloy rose to close to that of the Sn-Zn eutectic alloy due to the extreme dissolution of Bi in Sn matrix. Meanwhile, the adverse effect on melting behavior due to Bi addition was decreased significantly. The interfacial intermetallic compound (IMC) layer of the solder/Cu joint was more compact and uniform. Rapid solidification process obviously depressed the formation and growth of the interfacial IMC during the high-temperature aging and improved the high-temperature stability of the Sn-8Zn-3Bi solder/Cu joint.展开更多
The hot deformation behavior of as-solutionized Mg 8Sn 2Zn 0.5Cu(TZC820)alloy was investigated experimentally and numerically via isothermal compression tests at 250400℃and strain rate range of 0.013 s 1 on a Gleeble...The hot deformation behavior of as-solutionized Mg 8Sn 2Zn 0.5Cu(TZC820)alloy was investigated experimentally and numerically via isothermal compression tests at 250400℃and strain rate range of 0.013 s 1 on a Gleeble 1500D thermomechanical simulator.Results show that the deformation temperature and strain rate signi cantly affected ow stress and material constants.In addition,the strain-compensated constitutive relationship was established on the basis of true stress strain curves.The main deformation mechanism for this alloy was the dynamic recrystallization(DRX),and the DRX degree was effectively enhanced with an increase in deformation temperature and a decrease in strain rate.Moreover,the cellular automaton method was used to simulate the microstructure evolution during hot compression.In addition,the processing maps were established,and the optimum deformation parameters for the as-solutionized TZC820 alloy are at 370400℃and 0.01 s 1,and at 320360℃and 13 s 1.展开更多
The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A d...The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A dense dispersion of disc-like Ca2Mg6Zn3 precipitates are formed in Mg-8Zn-4Al-1Ca alloy aged at 160 ℃ for 16 h. In addition, the lattice distortions, honeycomb-looking Moiré fringes, edge dislocations and dislocation loop also exist in the microstructure. The precipitates of alloy aged at 160 ℃ for 48 h are coarse disc-like and fine dispersed grainy. When the alloy is subjected to aging at 160 ℃ for 227 h, the microstructure consists of numerous MgZn2 precipitates and Ca2Mg6Zn3 precipitates. All the analyses show that Ca is a particularly effective trace addition in improving the age-hardening and postponing the formation of MgZn2 precipitates in Mg-8Zn-4Al alloy aged at 160 ℃.展开更多
基金Project(50675234)supported by the National Natural Science Foundation of China
文摘The effects of rapid solidification on the microstructure and melting behavior of the Sn-8Zn-3Bi alloy were studied. The evolution of the microstructuraI characteristics of the solder/Cu joint after an isothermal aging at 150 ℃ was also analyzed to evaluate the interconnect reliability. Results showed that the Bi in Sn-8Zn-3Bi solder alloy completely dissolved in the Sn matrix with a dendritic structure after rapid solidification. Compared with as-solidified Sn-8Zn-3Bi solder alloy, the melting temperature of the rapid solidified alloy rose to close to that of the Sn-Zn eutectic alloy due to the extreme dissolution of Bi in Sn matrix. Meanwhile, the adverse effect on melting behavior due to Bi addition was decreased significantly. The interfacial intermetallic compound (IMC) layer of the solder/Cu joint was more compact and uniform. Rapid solidification process obviously depressed the formation and growth of the interfacial IMC during the high-temperature aging and improved the high-temperature stability of the Sn-8Zn-3Bi solder/Cu joint.
基金Project(2019YJ0478) supported by Sichuan Science and Technology Program,ChinaProjects(2017RCL18,2017RCL35) supported by the Research Foundation for the Introduction of Talent of Sichuan University of Science and Engineering,ChinaProjects(2017CL06,2018CL06) supported by the Opening Program of Material Corrosion and Protection Key Laboratory of Sichuan Province,China
文摘The hot deformation behavior of as-solutionized Mg 8Sn 2Zn 0.5Cu(TZC820)alloy was investigated experimentally and numerically via isothermal compression tests at 250400℃and strain rate range of 0.013 s 1 on a Gleeble 1500D thermomechanical simulator.Results show that the deformation temperature and strain rate signi cantly affected ow stress and material constants.In addition,the strain-compensated constitutive relationship was established on the basis of true stress strain curves.The main deformation mechanism for this alloy was the dynamic recrystallization(DRX),and the DRX degree was effectively enhanced with an increase in deformation temperature and a decrease in strain rate.Moreover,the cellular automaton method was used to simulate the microstructure evolution during hot compression.In addition,the processing maps were established,and the optimum deformation parameters for the as-solutionized TZC820 alloy are at 370400℃and 0.01 s 1,and at 320360℃and 13 s 1.
基金Project(51141007)supported by the National Natural Science Foundation of ChinaProject(E2013501096)supported by Hebei Province Natural Science Foundation,China
文摘The microstructure of Mg-8Zn-4Al-1Ca aged alloy was investigated by TEM and HRTEM. The results show that the hardening produced in the Mg-8Zn-4Al-1Ca alloy is considerably higher than that in the Mg-8Zn-4A1 alloy. A dense dispersion of disc-like Ca2Mg6Zn3 precipitates are formed in Mg-8Zn-4Al-1Ca alloy aged at 160 ℃ for 16 h. In addition, the lattice distortions, honeycomb-looking Moiré fringes, edge dislocations and dislocation loop also exist in the microstructure. The precipitates of alloy aged at 160 ℃ for 48 h are coarse disc-like and fine dispersed grainy. When the alloy is subjected to aging at 160 ℃ for 227 h, the microstructure consists of numerous MgZn2 precipitates and Ca2Mg6Zn3 precipitates. All the analyses show that Ca is a particularly effective trace addition in improving the age-hardening and postponing the formation of MgZn2 precipitates in Mg-8Zn-4Al alloy aged at 160 ℃.