Solid waste recycling is an economically sound strategy for preserving the environment,safeguarding natural resources,and diminishing the reliance on raw material consumption.Geopolymer technology offers a significant...Solid waste recycling is an economically sound strategy for preserving the environment,safeguarding natural resources,and diminishing the reliance on raw material consumption.Geopolymer technology offers a significant advantage by enabling the reuse and recycling of diverse materials.This research assesses how including silica fume and glass powder enhances the impact resistance of ultra-high-performance geopolymer concrete(UHPGC).In total,18 distinct mixtures were formulated by substituting ground granulated blast furnace slag with varying proportions of silica fume and glass powder,ranging from 10%to 40%.Similarly,for each of the mixtures above,steel fibre was added at a dosage of 1.5%to address the inherent brittleness of UHPGC.The mixtures were activated by combining sodium hydroxide and sodium silicate solution to generate geopolymer binders.The specimens were subjected to drop-weight impact testing,wherein an examination was carried out to evaluate various parameters,including flowability,density at fresh and hardened state,compressive strength,impact numbers indicative of cracking and failure occurrences,ductility index,and analysis of failure modes.Additionally,the variations in the impact test outcomes were analyzed using the Weibull distribution,and the findings corresponding to survival probability were offered.Furthermore,the microstructure of UHPGC was scrutinized through scanning electron microscopy.Findings reveal that the specimens incorporating glass powder exhibited lower cracking impact number values than those utilizing silica fume,with reductions ranging from 18.63%to 34.31%.Similarly,failure impact number values decreased from 8.26%to 28.46%across glass powder contents.The maximum compressive and impact strength was recorded in UHPGC,comprising 10%silica fume with fibres.展开更多
The reflected optical caustics method is applied to study dynamic fracture problems in hardened cement paste. First both the unreinforced cement paste and the glass fibres reinforced cement paste specimens were fabric...The reflected optical caustics method is applied to study dynamic fracture problems in hardened cement paste. First both the unreinforced cement paste and the glass fibres reinforced cement paste specimens were fabricated and the reflective coating on the surface of the specimen was prepared. Secondly the crack path and the shadow spot patterns during the crack propagation process for the two specimens were recorded by using a multi-spark high speed camera.Thirdly some dynamic parameters of two cement paste specimens including crack onset time the dynamic stress intensity factor and crack growth velocity were determined and analyzed comparatively.This indicates that the glass fibres can improve the fracture resistance and delay fracture time.These results will play an important role in evaluating the dynamic fracture properties of cement paste.展开更多
Regardless of the excellent properties of glass ionomer cements,their poor mechanical properties limit their applications to non-load bearing areas.This study aimed to investigate the effect of incorporated short,chop...Regardless of the excellent properties of glass ionomer cements,their poor mechanical properties limit their applications to non-load bearing areas.This study aimed to investigate the effect of incorporated short,chopped and randomly distributed flax fibers(0,0.5,1,2.5,5 and 25 wt%) on setting reaction kinetics,and mechanical and morphological properties of glass ionomer cements.Addition of flax fibers did not significantly affect the setting reaction extent.According to their content,flax fibers increased the compressive(from 148 to 250 MPa) and flexure strength(from 20 to 42 MPa).They also changed the brittle behavior of glass ionomer cements to a plastic one.They significantly reduced the compressive(from 3 to 1.3 GPa) and flexure modulus(from 19 to 14 GPa).Accordingly,flax fiber-modified glass ionomer cements could be potentially used in high-stress bearing areas.展开更多
Acrylonitrile-butadiene-Styrene (ABS), with and without calcium carbonate (calcite) particles,was used as the matrix for reinforcement with as-received short-glass fibres (were originallytreated by the manufacturer) a...Acrylonitrile-butadiene-Styrene (ABS), with and without calcium carbonate (calcite) particles,was used as the matrix for reinforcement with as-received short-glass fibres (were originallytreated by the manufacturer) and sized short-glass fibres with two amino-silane coupling agents.The calcite particle content is 0, 11.7 and 23.5 vol. pct for the matrices. The glass fiber contentis 0, 10 and 15 vol. pct. The matrix materials and corresponding composites were compoundedusing a twin screw extruder and dumbbell-shaped tensile bars were prepared with an injectionmolding process. The tensile and flexural properties as well as the unnotched and notchedCharpy impact energies of short glass fibre/calcite/ABS composites were studied in this paper.The effects of fibres, fibre surface treatments and particles on these mechanical properties ofthe composites were discussed in detail. An importarit information was obtained, which is thatthe tensile and flexural strengths of hybrid SGF/calcite/ABS composites are the same as thoseof corresponding fibre composites when the ratio of the interfacial adhesion strength betweenparticles and matrix to that between fibres and matrix is higher than certain value. otherwise theformer are lower than the latter.展开更多
Although in recent years glass fibre reinforced cement (GRC) has been used in buildings and infrastructure, its application in structural elements has been somewhat restricted due to the worsening of its mechanical pr...Although in recent years glass fibre reinforced cement (GRC) has been used in buildings and infrastructure, its application in structural elements has been somewhat restricted due to the worsening of its mechanical properties with ageing and the limited data available related with its fracture energy. With the aim of developing existing knowledge of GRC, the fracture energy in an in-plane and out-of-plane direction of the panel has been obtained. Three types of GRC with different formulations have been tested. The results showed that the fracture energy of a GRC with a 25% addition of a pozzolanic admixture is 40% and 8% higher than a standard GRC in, respectively, in-plane and out-of-plane directions. Similarly, an addition of 25% of thermal-treated kaolin to a standard GRC increases its fracture energy up to 490% and 400%, to the corresponding orientation. The use of digital image correlation (DIC) in the fracture test analysis has permitted a description of the damaging patterns and explanation of the behaviours identified in the fracture tests performed. The multi-cracking process that appears explains the higher fracture energy found in the GRC with an addition of 25% of the aforementioned thermal-treated kaolin. The analysis performed by means of DIC and the results obtained showed GRC with an addition of 25% of thermal-treated kaolin to be the most suitable formulation for possible future structural applications with a short life span in horizontal and vertical elements.展开更多
The influence of pretreatment of fibre on interfacial and mechanical properties of glass fibre/ polypropylene composites was investigated. Firstly, the glass fibres were coated with the blends of m-IPP (maleic anhydri...The influence of pretreatment of fibre on interfacial and mechanical properties of glass fibre/ polypropylene composites was investigated. Firstly, the glass fibres were coated with the blends of m-IPP (maleic anhydride grafting isotatic polypropylene ) and m-APP ( maleic anhydride grafting amorphous polypropylene) in different, ratios. Secondly, the interfaced reaction of the coated composites was analysed by FTIR, which shows that the interfacial chemical reaction between m-IPP/m-APP in the fibre coating and the fibre surface- bound coupling agent is in existence. Thirdly, the microstructure of the coated composites wax studied by SEM. The results indicate that the coating treatment is effective on improving interfacial adhesion of the, fibre-matrix and the right amount of m-APP added to the coal impels the plastic deformation surrounding the point of cracks , which makes cracks turn to region and prevents from further interface debonding. Lastly, the mechanical properties were evaluated by measurement, of the flexural strength and impact strength of the composites. It was found that, the flexural strength and impact strength of the composites with coating fibre are higher than those of uncoating fibre composite. The results of these investigations draw the conclusion that the pretreatment of fibre with m-IPP/m-APP blends can form an optimize interlayer between the fibre and the PP matrix, which improves both the strength and lough-ness of the composites.展开更多
Glass fibre reinforced concrete placement technique generates losses due to rebound effects of the already sprayed concrete particles.Rebounded concrete amount cause a significant difference between the initial mix de...Glass fibre reinforced concrete placement technique generates losses due to rebound effects of the already sprayed concrete particles.Rebounded concrete amount cause a significant difference between the initial mix design and emplaced mix compositions.Apart from the structural differences,it comes with a cost increase which was resulted by the splashed concrete amount.Many factors such as viscosity and quantity of mixes dominate this rebound amount in sprayed glass fibre reinforced concrete applications depending on production technologies and processes;however,this research focuses on the spray distance and the angle of the spray gun which mainly effects the rebound amount in glass fibre reinforced concrete production.This paper aims to understand the required angle and distance for glass fibre reinforced concrete mixes having on-site plastic viscosity values.Glass fibre reinforced mixtures were also modelled with a finite element method based software and,the analysis results were compared with production line results.Results of the analysis and on-site studies showed a decisive correlation between,discharge distance,discharge angle and the viscosity of the concrete.展开更多
Hydroxyapatite/polylactide (HA/PLA) composites have been intensively investigated for their potential as biodegradable fixation devices to heal bone fractures. However, most of these composites failed to achieve a bon...Hydroxyapatite/polylactide (HA/PLA) composites have been intensively investigated for their potential as biodegradable fixation devices to heal bone fractures. However, most of these composites failed to achieve a bone-mimicking level of mechanical properties, which is an essential demand of the targeted application. In this study, the nano-hydroxyapatite/polylactide composites were used as the matrix and continuous phosphate glass fibres (PGF) served as the major reinforcement to obtain the nano-HA/PGF/PLA hybrid composites. While the PGF volume fraction remained constant (25%), the nano-HA content (in weight) varied from 0% to 20%. As nano-HA loading increased, the flexural modulus of the composites increased from 8.70 ± 0.35 GPa to 14.97 ± 1.30 GPa, and the flexural strengths were enhanced from 236.31 ± 10.83 MPa to 310.55 ± 22.88 MPa. However, it is found that the degradation rates are higher with more nano-HA loaded. Enhanced water absorption ability, as well as increased voids in the composites is possible reasons for the accelerated degradation of composites with higher nano-HA loading. The hybrid composites possess mechanical properties that are superior to most of the HA/PLA composites in previous research while maintaining the biodegradability. With a proper loading of nano-HA in composites of 10 weight percent, the composites are also found with improved mechanical properties without catastrophic degradation. The composites developed in this study have great potential as biodegradable bone fixation device with enhanced load-bearing ability as confirmed and superior bioactivity as anticipated.展开更多
<span style="font-family:Verdana;">A composite material is made up of two phases, the matrix, and the reinforc</span><span style="font-family:Verdana;">ing materials. The reinforc...<span style="font-family:Verdana;">A composite material is made up of two phases, the matrix, and the reinforc</span><span style="font-family:Verdana;">ing materials. The reinforcing material is embedded over matrix material.</span><span style="font-family:Verdana;"> The reinforcing material works to make the matrix material harder. A fibreglass reinforced composite was developed using E-glass fibre reinforcement and epoxy resin matrix. The composites were produced using the hand lay-up technique with varying fibre percentage of 9%, 13% and 25% by weight percentage of fibreglass mat at orientations of 0<span style="white-space:nowrap;">°</span>, 15<span style="white-space:nowrap;">°</span>, 45<span style="white-space:nowrap;">°</span>, and 90<span style="white-space:nowrap;">°</span> chosen at random. A 13% by weight percentage of chopped mat was also developed for purpose of comparison. The fabricated composites were subjected to tensile test, flexural test, impact test, punch shear test and hardness test to ascertain the appropriate fibre contents and orientation that is optimum for the manufacture of headgears. Analysis of Variance was carried out to determine level </span><span style="font-family:Verdana;">of significance and percentage contribution of the parameters. The results</span><span style="font-family:Verdana;"> show that both fibre orientation and percentage of fibre content reinforcement of have significant influence on the strength and fracture energy of the composite .The fibre orientation has a higher impact on the strength of the composite (79.74%) while the percentage of fibre reinforcement has a lesser impact on the tensile strength of the composite (20.26%).</span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">However, </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">t</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">he fibre </span><span style="font-family:Verdana;">orientation has a lesser impact on the fracture energy of the composite</span><span style="font-family:Verdana;"> (24.54%) while the percentage of fibre reinforcement has a higher impact on the fracture energy of the composite (75.46%) The result from this study shows that the increase in fibre content increases flexural strength and impact toughness of the fibreglass reinforced composite. A fibre orientation of 90<span style="white-space:nowrap;">°</span> and fibre reinforcement of 25% wt. was determined to be optimally suitable for the manufacture of headgears.</span></span></span></span>展开更多
In this work, manufacturing tools for thermoplastic (TP) composites have been developed. The chosen process involves the stacking alternately of oriented dry fabrics and TP films and does not use semi-products in orde...In this work, manufacturing tools for thermoplastic (TP) composites have been developed. The chosen process involves the stacking alternately of oriented dry fabrics and TP films and does not use semi-products in order to reduce material costs. This study was specifically directed towards optimizing the impregnation of continuous glass and carbon fibres reinforcing two TP amorphous matrices, the polyphenylsulfone (PPSU) and polyetherimide (PEI), to obtain semi-finished products employed for aeronautical structures. The impregnation quality of inter and intra-yarns is analyzed and validated by optical and scanning micrographic observations conducted with an optical and a Scanning Electron Microscopies (SEM), respectively. The study showed that besides the process parameters and porosity distribution in the core of warp yarns, the impregnation quality depends on the surface properties of constituents. Desizing treatment has been carried out to improve the wettability of fibres by the TP matrices.展开更多
The mechanical and damage properties of single fibres used in fibrous composite have gained tremendous importance in recent years. These properties are used in determination of effective properties of composites by mi...The mechanical and damage properties of single fibres used in fibrous composite have gained tremendous importance in recent years. These properties are used in determination of effective properties of composites by micromechanics. These are also used in the micromechanical damage modeling. Further, these properties are used as an indicator of the excellence of product by manufacturers. In the present study the axial tensile modulus, ultimate strength and failure strain of single fibres are determined for carbon and glass fibres. ASTM D3379-75 standard is followed and a number of fibers are tested for statistical analysis. The axial tensile moduli measured are 246.7 GPa and 93.3 GPa, respectively and strength are 3031.6 MPa and 2035.9 MPa, respectively for carbon and glass fibres. Further, the respective axial tensile failure strains are 0.0137 and 0.0224. The error in the measurement of axial modulus is below 8% while for axial tensile strength is below 1%.展开更多
A series of glass fibre reinforced composites based on novel blend matrices were fabricated us-ing reaction injection moulding (RIM) processing.The blends were made of sub-sequentialinterpenetrating polymer networks...A series of glass fibre reinforced composites based on novel blend matrices were fabricated us-ing reaction injection moulding (RIM) processing.The blends were made of sub-sequentialinterpenetrating polymer networks of acrylic-polyurea or acrylic-copoly(urea-isocyanurate).Themechanical and thermal properties were characterized by tensile test and dynamic mechanical ana-lysis.The fracture data from single edge notch bend tests were analysed using fracture mechanicsfor the composites to give K<sub>IC</sub> and G<sub>IC</sub>.The correlation between reaction kinetics and morphologyof the blend and the composite properties were discussed.The investigations showed that the novelblends have good bonding property on glass fibre,thus good processability in RIM,and the re-suited composites have good mechanical and thermal properties.展开更多
Mechanical properties of ukam, banana, sisal, coconut, hemp and e-glass fibre reinforced laminates were evaluated to assess the possibility of using it as new material in engineering applications. Samples were fabrica...Mechanical properties of ukam, banana, sisal, coconut, hemp and e-glass fibre reinforced laminates were evaluated to assess the possibility of using it as new material in engineering applications. Samples were fabricated by the hand lay-up process (30:70 fibre and matrix ratio by weight) and the properties evaluated using the INSTRON material testing system. The mechanical properties were tested and showed that glass laminate has the maximum tensile strength of 63 MPa, bending strength of 0.5 MPa, compressive strength of 37.75 MPa and the impact strength of 17.82 J/m2. The ukam plant fibre laminate has the maximum tensile strength of 16.25 MPa and the impact strength of 9.8J/m among the natural fibres;the sisal laminate has the maximum compressive strength of 42 MPa and maximum bending strength of 0.0036 MPa among the natural fibres. Results indicated that natural fibres are of interest for low-cost engineering applications and can compete with artificial glass fibres (E-glass fibre) when a high stiffness per unit weight is desirable. Results also indicated that future research towards significant improvements in tensile and impact strength of these types of composites should focus on the optimisation of fibre strength rather than interfacial bond strength.展开更多
基金SASTRA Deemed University,India for its generous research support。
文摘Solid waste recycling is an economically sound strategy for preserving the environment,safeguarding natural resources,and diminishing the reliance on raw material consumption.Geopolymer technology offers a significant advantage by enabling the reuse and recycling of diverse materials.This research assesses how including silica fume and glass powder enhances the impact resistance of ultra-high-performance geopolymer concrete(UHPGC).In total,18 distinct mixtures were formulated by substituting ground granulated blast furnace slag with varying proportions of silica fume and glass powder,ranging from 10%to 40%.Similarly,for each of the mixtures above,steel fibre was added at a dosage of 1.5%to address the inherent brittleness of UHPGC.The mixtures were activated by combining sodium hydroxide and sodium silicate solution to generate geopolymer binders.The specimens were subjected to drop-weight impact testing,wherein an examination was carried out to evaluate various parameters,including flowability,density at fresh and hardened state,compressive strength,impact numbers indicative of cracking and failure occurrences,ductility index,and analysis of failure modes.Additionally,the variations in the impact test outcomes were analyzed using the Weibull distribution,and the findings corresponding to survival probability were offered.Furthermore,the microstructure of UHPGC was scrutinized through scanning electron microscopy.Findings reveal that the specimens incorporating glass powder exhibited lower cracking impact number values than those utilizing silica fume,with reductions ranging from 18.63%to 34.31%.Similarly,failure impact number values decreased from 8.26%to 28.46%across glass powder contents.The maximum compressive and impact strength was recorded in UHPGC,comprising 10%silica fume with fibres.
基金The Ph.D.Programs Foundation of Ministry of Education of China(No.20120023120020)the National Natural Science Foundation of China(No.51404273)
文摘The reflected optical caustics method is applied to study dynamic fracture problems in hardened cement paste. First both the unreinforced cement paste and the glass fibres reinforced cement paste specimens were fabricated and the reflective coating on the surface of the specimen was prepared. Secondly the crack path and the shadow spot patterns during the crack propagation process for the two specimens were recorded by using a multi-spark high speed camera.Thirdly some dynamic parameters of two cement paste specimens including crack onset time the dynamic stress intensity factor and crack growth velocity were determined and analyzed comparatively.This indicates that the glass fibres can improve the fracture resistance and delay fracture time.These results will play an important role in evaluating the dynamic fracture properties of cement paste.
文摘Regardless of the excellent properties of glass ionomer cements,their poor mechanical properties limit their applications to non-load bearing areas.This study aimed to investigate the effect of incorporated short,chopped and randomly distributed flax fibers(0,0.5,1,2.5,5 and 25 wt%) on setting reaction kinetics,and mechanical and morphological properties of glass ionomer cements.Addition of flax fibers did not significantly affect the setting reaction extent.According to their content,flax fibers increased the compressive(from 148 to 250 MPa) and flexure strength(from 20 to 42 MPa).They also changed the brittle behavior of glass ionomer cements to a plastic one.They significantly reduced the compressive(from 3 to 1.3 GPa) and flexure modulus(from 19 to 14 GPa).Accordingly,flax fiber-modified glass ionomer cements could be potentially used in high-stress bearing areas.
文摘Acrylonitrile-butadiene-Styrene (ABS), with and without calcium carbonate (calcite) particles,was used as the matrix for reinforcement with as-received short-glass fibres (were originallytreated by the manufacturer) and sized short-glass fibres with two amino-silane coupling agents.The calcite particle content is 0, 11.7 and 23.5 vol. pct for the matrices. The glass fiber contentis 0, 10 and 15 vol. pct. The matrix materials and corresponding composites were compoundedusing a twin screw extruder and dumbbell-shaped tensile bars were prepared with an injectionmolding process. The tensile and flexural properties as well as the unnotched and notchedCharpy impact energies of short glass fibre/calcite/ABS composites were studied in this paper.The effects of fibres, fibre surface treatments and particles on these mechanical properties ofthe composites were discussed in detail. An importarit information was obtained, which is thatthe tensile and flexural strengths of hybrid SGF/calcite/ABS composites are the same as thoseof corresponding fibre composites when the ratio of the interfacial adhesion strength betweenparticles and matrix to that between fibres and matrix is higher than certain value. otherwise theformer are lower than the latter.
文摘Although in recent years glass fibre reinforced cement (GRC) has been used in buildings and infrastructure, its application in structural elements has been somewhat restricted due to the worsening of its mechanical properties with ageing and the limited data available related with its fracture energy. With the aim of developing existing knowledge of GRC, the fracture energy in an in-plane and out-of-plane direction of the panel has been obtained. Three types of GRC with different formulations have been tested. The results showed that the fracture energy of a GRC with a 25% addition of a pozzolanic admixture is 40% and 8% higher than a standard GRC in, respectively, in-plane and out-of-plane directions. Similarly, an addition of 25% of thermal-treated kaolin to a standard GRC increases its fracture energy up to 490% and 400%, to the corresponding orientation. The use of digital image correlation (DIC) in the fracture test analysis has permitted a description of the damaging patterns and explanation of the behaviours identified in the fracture tests performed. The multi-cracking process that appears explains the higher fracture energy found in the GRC with an addition of 25% of the aforementioned thermal-treated kaolin. The analysis performed by means of DIC and the results obtained showed GRC with an addition of 25% of thermal-treated kaolin to be the most suitable formulation for possible future structural applications with a short life span in horizontal and vertical elements.
基金Jointly Funded by the Natural Science Foundation of China (No. 19972049) and the Natural Science Foundation of Hubei Province (No. 99J073).
文摘The influence of pretreatment of fibre on interfacial and mechanical properties of glass fibre/ polypropylene composites was investigated. Firstly, the glass fibres were coated with the blends of m-IPP (maleic anhydride grafting isotatic polypropylene ) and m-APP ( maleic anhydride grafting amorphous polypropylene) in different, ratios. Secondly, the interfaced reaction of the coated composites was analysed by FTIR, which shows that the interfacial chemical reaction between m-IPP/m-APP in the fibre coating and the fibre surface- bound coupling agent is in existence. Thirdly, the microstructure of the coated composites wax studied by SEM. The results indicate that the coating treatment is effective on improving interfacial adhesion of the, fibre-matrix and the right amount of m-APP added to the coal impels the plastic deformation surrounding the point of cracks , which makes cracks turn to region and prevents from further interface debonding. Lastly, the mechanical properties were evaluated by measurement, of the flexural strength and impact strength of the composites. It was found that, the flexural strength and impact strength of the composites with coating fibre are higher than those of uncoating fibre composite. The results of these investigations draw the conclusion that the pretreatment of fibre with m-IPP/m-APP blends can form an optimize interlayer between the fibre and the PP matrix, which improves both the strength and lough-ness of the composites.
文摘Glass fibre reinforced concrete placement technique generates losses due to rebound effects of the already sprayed concrete particles.Rebounded concrete amount cause a significant difference between the initial mix design and emplaced mix compositions.Apart from the structural differences,it comes with a cost increase which was resulted by the splashed concrete amount.Many factors such as viscosity and quantity of mixes dominate this rebound amount in sprayed glass fibre reinforced concrete applications depending on production technologies and processes;however,this research focuses on the spray distance and the angle of the spray gun which mainly effects the rebound amount in glass fibre reinforced concrete production.This paper aims to understand the required angle and distance for glass fibre reinforced concrete mixes having on-site plastic viscosity values.Glass fibre reinforced mixtures were also modelled with a finite element method based software and,the analysis results were compared with production line results.Results of the analysis and on-site studies showed a decisive correlation between,discharge distance,discharge angle and the viscosity of the concrete.
文摘Hydroxyapatite/polylactide (HA/PLA) composites have been intensively investigated for their potential as biodegradable fixation devices to heal bone fractures. However, most of these composites failed to achieve a bone-mimicking level of mechanical properties, which is an essential demand of the targeted application. In this study, the nano-hydroxyapatite/polylactide composites were used as the matrix and continuous phosphate glass fibres (PGF) served as the major reinforcement to obtain the nano-HA/PGF/PLA hybrid composites. While the PGF volume fraction remained constant (25%), the nano-HA content (in weight) varied from 0% to 20%. As nano-HA loading increased, the flexural modulus of the composites increased from 8.70 ± 0.35 GPa to 14.97 ± 1.30 GPa, and the flexural strengths were enhanced from 236.31 ± 10.83 MPa to 310.55 ± 22.88 MPa. However, it is found that the degradation rates are higher with more nano-HA loaded. Enhanced water absorption ability, as well as increased voids in the composites is possible reasons for the accelerated degradation of composites with higher nano-HA loading. The hybrid composites possess mechanical properties that are superior to most of the HA/PLA composites in previous research while maintaining the biodegradability. With a proper loading of nano-HA in composites of 10 weight percent, the composites are also found with improved mechanical properties without catastrophic degradation. The composites developed in this study have great potential as biodegradable bone fixation device with enhanced load-bearing ability as confirmed and superior bioactivity as anticipated.
文摘<span style="font-family:Verdana;">A composite material is made up of two phases, the matrix, and the reinforc</span><span style="font-family:Verdana;">ing materials. The reinforcing material is embedded over matrix material.</span><span style="font-family:Verdana;"> The reinforcing material works to make the matrix material harder. A fibreglass reinforced composite was developed using E-glass fibre reinforcement and epoxy resin matrix. The composites were produced using the hand lay-up technique with varying fibre percentage of 9%, 13% and 25% by weight percentage of fibreglass mat at orientations of 0<span style="white-space:nowrap;">°</span>, 15<span style="white-space:nowrap;">°</span>, 45<span style="white-space:nowrap;">°</span>, and 90<span style="white-space:nowrap;">°</span> chosen at random. A 13% by weight percentage of chopped mat was also developed for purpose of comparison. The fabricated composites were subjected to tensile test, flexural test, impact test, punch shear test and hardness test to ascertain the appropriate fibre contents and orientation that is optimum for the manufacture of headgears. Analysis of Variance was carried out to determine level </span><span style="font-family:Verdana;">of significance and percentage contribution of the parameters. The results</span><span style="font-family:Verdana;"> show that both fibre orientation and percentage of fibre content reinforcement of have significant influence on the strength and fracture energy of the composite .The fibre orientation has a higher impact on the strength of the composite (79.74%) while the percentage of fibre reinforcement has a lesser impact on the tensile strength of the composite (20.26%).</span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">However, </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">t</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">he fibre </span><span style="font-family:Verdana;">orientation has a lesser impact on the fracture energy of the composite</span><span style="font-family:Verdana;"> (24.54%) while the percentage of fibre reinforcement has a higher impact on the fracture energy of the composite (75.46%) The result from this study shows that the increase in fibre content increases flexural strength and impact toughness of the fibreglass reinforced composite. A fibre orientation of 90<span style="white-space:nowrap;">°</span> and fibre reinforcement of 25% wt. was determined to be optimally suitable for the manufacture of headgears.</span></span></span></span>
文摘In this work, manufacturing tools for thermoplastic (TP) composites have been developed. The chosen process involves the stacking alternately of oriented dry fabrics and TP films and does not use semi-products in order to reduce material costs. This study was specifically directed towards optimizing the impregnation of continuous glass and carbon fibres reinforcing two TP amorphous matrices, the polyphenylsulfone (PPSU) and polyetherimide (PEI), to obtain semi-finished products employed for aeronautical structures. The impregnation quality of inter and intra-yarns is analyzed and validated by optical and scanning micrographic observations conducted with an optical and a Scanning Electron Microscopies (SEM), respectively. The study showed that besides the process parameters and porosity distribution in the core of warp yarns, the impregnation quality depends on the surface properties of constituents. Desizing treatment has been carried out to improve the wettability of fibres by the TP matrices.
文摘The mechanical and damage properties of single fibres used in fibrous composite have gained tremendous importance in recent years. These properties are used in determination of effective properties of composites by micromechanics. These are also used in the micromechanical damage modeling. Further, these properties are used as an indicator of the excellence of product by manufacturers. In the present study the axial tensile modulus, ultimate strength and failure strain of single fibres are determined for carbon and glass fibres. ASTM D3379-75 standard is followed and a number of fibers are tested for statistical analysis. The axial tensile moduli measured are 246.7 GPa and 93.3 GPa, respectively and strength are 3031.6 MPa and 2035.9 MPa, respectively for carbon and glass fibres. Further, the respective axial tensile failure strains are 0.0137 and 0.0224. The error in the measurement of axial modulus is below 8% while for axial tensile strength is below 1%.
文摘A series of glass fibre reinforced composites based on novel blend matrices were fabricated us-ing reaction injection moulding (RIM) processing.The blends were made of sub-sequentialinterpenetrating polymer networks of acrylic-polyurea or acrylic-copoly(urea-isocyanurate).Themechanical and thermal properties were characterized by tensile test and dynamic mechanical ana-lysis.The fracture data from single edge notch bend tests were analysed using fracture mechanicsfor the composites to give K<sub>IC</sub> and G<sub>IC</sub>.The correlation between reaction kinetics and morphologyof the blend and the composite properties were discussed.The investigations showed that the novelblends have good bonding property on glass fibre,thus good processability in RIM,and the re-suited composites have good mechanical and thermal properties.
文摘Mechanical properties of ukam, banana, sisal, coconut, hemp and e-glass fibre reinforced laminates were evaluated to assess the possibility of using it as new material in engineering applications. Samples were fabricated by the hand lay-up process (30:70 fibre and matrix ratio by weight) and the properties evaluated using the INSTRON material testing system. The mechanical properties were tested and showed that glass laminate has the maximum tensile strength of 63 MPa, bending strength of 0.5 MPa, compressive strength of 37.75 MPa and the impact strength of 17.82 J/m2. The ukam plant fibre laminate has the maximum tensile strength of 16.25 MPa and the impact strength of 9.8J/m among the natural fibres;the sisal laminate has the maximum compressive strength of 42 MPa and maximum bending strength of 0.0036 MPa among the natural fibres. Results indicated that natural fibres are of interest for low-cost engineering applications and can compete with artificial glass fibres (E-glass fibre) when a high stiffness per unit weight is desirable. Results also indicated that future research towards significant improvements in tensile and impact strength of these types of composites should focus on the optimisation of fibre strength rather than interfacial bond strength.