期刊文献+
共找到6,749篇文章
< 1 2 250 >
每页显示 20 50 100
Thermochemical splitting of CO_(2) on perovskites for CO production: A review
1
作者 Biduan Chen Harriet Kildahl +3 位作者 Hui Yang Yulong Ding Lige Tong Li Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期464-485,I0011,共23页
Energy supply dominated by fossil energy has been and remains the main cause of carbon dioxide emissions,the major greenhouse gas leading to the current grave climate change challenges.Many technical pathways have bee... Energy supply dominated by fossil energy has been and remains the main cause of carbon dioxide emissions,the major greenhouse gas leading to the current grave climate change challenges.Many technical pathways have been proposed to address the challenges.Carbon capture and utilization(CCU) represents one of the approaches and thermochemical CO_(2) splitting driven by thermal energy is a subset of the CCU,which converts the captured CO_(2) into CO and makes it possible to achieve closed-loop carbon recirculation.Redox-active catalysts are among the most critical components of the thermochemical splitting cycles and perovskites are regarded as the most promising catalysts.Here we review the latest advancements in thermochemical cycles based on perovskites,covering thermodynamic principles,material modifications,reaction kinetics,oxygen pressure control,circular strategies,and demonstrations to provide a comprehensive overview of the topical area.Thermochemical cycles based on such materials require the consideration of trade-off between cost and efficiency,which is related to actual material used,operation mode,oxygen removal,and heat recovery.Lots of efforts have been made towards improving reaction rates,conversion efficiency and cycling stability,materials related research has been lacking-a key aspect affecting the performance across all above aspects.Double perovskites and composite perovskites arise recently as a potentially promising addition to material candidates.For such materials,more effective oxygen removal would be needed to enhance the overall efficiency,for which thermochemical or electrochemical oxygen pumps could contribute to efficient oxygen removal as well as serve as means for inert gas regeneration.The integration of thermochemical CO_(2) splitting process with downstream fuel production and other processes could reduce costs and increase efficiency of the technology.This represents one of the directions for the future research. 展开更多
关键词 perovskite Thermochemical cycles CO_(2) splitting Fuel production Non-stoichiometric
下载PDF
Surface repair of wide-bandgap perovskites for high-performance all-perovskite tandem solar cells
2
作者 Xiaojing Lv Weisheng Li +11 位作者 Jin Zhang Yujie Yang Xuefei Jia Yitong Ji Qianqian Lin Wenchao Huang Tongle Bu Zhiwei Ren Canglang Yao Fuzhi Huang Yi-Bing Cheng Jinhui Tong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期64-70,I0003,共8页
Wide-bandgap(WBG)perovskite solar cells(PSCs)play a fundamental role in perovskite-based tandem solar cells.However,the efficiency of WBG PSCs is limited by significant open-circuit voltage losses,which are primarily ... Wide-bandgap(WBG)perovskite solar cells(PSCs)play a fundamental role in perovskite-based tandem solar cells.However,the efficiency of WBG PSCs is limited by significant open-circuit voltage losses,which are primarily caused by surface defects.In this study,we present a novel method for modifying surfaces using the multifunctional S-ethylisothiourea hydrobromide(SEBr),which can passivate both Pb^(-1)and FA^(-1)terminated surfaces,Moreover,the SEBr upshifted the Fermi level at the perovskite interface,thereby promoting carrier collection.This proposed method was effective for both 1.67 and 1.77 eV WBG PSCs,achieving power conversion efficiencies(PCEs)of 22.47%and 19.90%,respectively,with V_(OC)values of 1.28 and 1.33 V,along with improved film and device stability.With this advancement,we were able to fabricate monolithic all-perovskite tandem solar cells with a champion PCE of 27.10%,This research offers valuable insights for passivating the surface trap states of WBG perovskite through rational multifunctional molecular engineering. 展开更多
关键词 Wide-bandgap perovskite Surface defect Multifunctional molecule All-perovskite tandem solar cells
下载PDF
Thermal decomposition effect of MgCo_(2)O_(4)nanosheets on ammonium perchlorate-based energetic molecular perovskites 被引量:1
3
作者 Er-hai An Xiao-xia Li +3 位作者 Hai-xia Zhao Ying-xin Tan Xiong Cao Peng Deng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期111-119,共9页
Energetic molecular perovskites have attracted widespread attention in the fields of energy materials due to their high detonation performance.In this work,we reported the effect of MgCo_(2)O_(4) nanosheets on the the... Energetic molecular perovskites have attracted widespread attention in the fields of energy materials due to their high detonation performance.In this work,we reported the effect of MgCo_(2)O_(4) nanosheets on the thermal decomposition of ammonium perchlorate(NH_(4)ClO_(4),AP)-based energetic molecular perovskites(AP-based energetic molecular perovskites).The morphology and structure of the MgCo_(2)O_(4) nanosheets were characterized.And their catalytic effect on the thermal decomposition of AP-based energetic molecular perovskites(H_2pz)[NH_(4)(ClO_(4))_(3)](PAP-4),(H_2dabco)[NH_(4)(ClO_(4))_(3)](DAP-4),(H_2mpz)[NH_(4)(ClO_(4))_(3)](PAP-M_(4)),and (H_2hpz)[NH_(4)(ClO_(4))_(3)](PAP-H_(4)) was analyzed.The results showed that MgCo_(2)O_(4) nanosheets had excellent intrinsically catalytic performance towards enhancing the thermal decomposition of AP-based energetic molecular perovskites.After adding MgCo_(2)O_(4) nanosheets,the thermal decomposition peak temperatures of PAP-4,DAP-4,PAP-M_(4),and PAP-H_(4) had been reduced by35.7℃,48.4℃,37.9℃,and 43.6℃,respectively.And the activation energy(Ea)of the thermal decomposition of AP-based energetic molecular perovskites had been reduced,the Eaof PAP-H_(4) decreased by 46.4 kJ/mol at most among them.The catalytic mechanism of MgCo_(2)O_(4) nanosheets for AP-based energetic molecular perovskites is analyzed.This work provides a reference for the future application of AP-based energetic molecular perovskites. 展开更多
关键词 AP-based energetic molecular perovskites MgCo_(2)O_(4)nanosheets Thermal decomposition Catalytic performance
下载PDF
Improving the films quality of Sn-based perovskites through additive treatment for high-performance light-emitting diodes
4
作者 Ying Li Guozhen Shen 《Journal of Semiconductors》 EI CAS CSCD 2023年第8期11-12,共2页
Hybrid lead halide perovskites have received great attention in the field of light-emitting diodes(LEDs)owing to their excellent optoelectronic properties,low cost,and high color purity.To data,the external quantum ef... Hybrid lead halide perovskites have received great attention in the field of light-emitting diodes(LEDs)owing to their excellent optoelectronic properties,low cost,and high color purity.To data,the external quantum efficiency(EQE)of lead halide perovskites LEDs has been reported to exceed 20%[1].Even so,the toxicity of conventional lead has cast a gloomy shadow over their further application. 展开更多
关键词 DIODES OPTOELECTRONIC perovskitE
下载PDF
Infrared optical absorption of Fr?hlich polarons in metal halide perovskites
5
作者 崔钰 刘晓逸 +3 位作者 马旭菲 邓加培 刘怡言 王子武 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期408-413,共6页
The formation of Frohlich polarons in metal halide perovskites,arising from the charge carrier-longitudinal optical(LO)phonon coupling,has been proposed to explain their exceptional properties,but the effective identi... The formation of Frohlich polarons in metal halide perovskites,arising from the charge carrier-longitudinal optical(LO)phonon coupling,has been proposed to explain their exceptional properties,but the effective identification of polarons in these materials is still a challenging task.Herein,we theoretically present the infrared optical absorption of Frohlich polarons based on the Huang-Rhys model.We find that multiphonon overtones appear as the energy of the incident photons matches the multiple LO phonons,wherein the average phonon number of a polaron can be directly evaluated by the order of the strongest overtone.These multiphonon structures sensitively depend on the scale of electronic distribution in the ground state and the dimensionality of the perovskite materials,revealing the effective modulation of competing processes between polaron formation and carrier cooling.Moreover,the order of the strongest overtone shifts to higher ones with temperature,providing a potential proof that the carrier mobility is affected by LO phonon scattering.The present model not only suggests a direct way to verify Frohlich polarons but also enriches our understanding of the properties of polarons in metal halide perovskites. 展开更多
关键词 metal halide perovskites POLARON Huang-Rhys factor
下载PDF
Organic-inorganic halide perovskites for memristors
6
作者 Memoona Qammar Bosen Zou Jonathan E.Halpert 《Journal of Semiconductors》 EI CAS CSCD 2023年第9期39-46,共8页
Organic-inorganic halides perovskites(OHPs)have drawn the attention of many researchers owing to their astonishing and unique optoelectronic properties.They have been extensively used for photovoltaic applications,ach... Organic-inorganic halides perovskites(OHPs)have drawn the attention of many researchers owing to their astonishing and unique optoelectronic properties.They have been extensively used for photovoltaic applications,achieving higher than 26%power conversion efficiency to date.These materials have potential to be deployed for many other applications beyond photovoltaics like photodetectors,sensors,light-emitting diodes(LEDs),and resistors.To address the looming challenge of Moore’s law and the Von Neumann bottleneck,many new technologies regarding the computation of architectures and storage of information are being extensively researched.Since the discovery of the memristor as a fourth component of the circuit,many materials are explored for memristive applications.Lately,researchers have advanced the exploration of OHPs for memristive applications.These materials possess promising memristive properties and various kinds of halide perovskites have been used for different applications that are not only limited to data storage but expand towards artificial synapses,and neuromorphic computing.Herein we summarize the recent advancements of OHPs for memristive applications,their unique electronic properties,fabrication of materials,and current progress in this field with some future perspectives and outlooks. 展开更多
关键词 organic-inorganic halide perovskites resistive switching MEMRISTORS
下载PDF
Beyond two-dimension: One-and zero-dimensional halide perovskites as new-generation passivators for high-performance perovskite solar cells
7
作者 Yuanyuan Zhao Huimin Xiang +3 位作者 Ran Ran Wei Zhou Wei Wang Zongping Shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期189-208,I0007,共21页
Perovskite solar cells(PSCs) as a rising star in the photovoltaic field have received rapidly increasing attention recently due to the boosting power conversion efficiencies(PCEs) from 3.8% to 25.7% in the last13 year... Perovskite solar cells(PSCs) as a rising star in the photovoltaic field have received rapidly increasing attention recently due to the boosting power conversion efficiencies(PCEs) from 3.8% to 25.7% in the last13 years. Nevertheless, the conventional PSCs with three-dimensional(3D) halide perovskites as light absorbers suffer from inferior PCEs and poor durability under sunlight, high-temperature and humid conditions due to the high defect amount and structural instability of 3D perovskites, respectively. To tackle these crucial issues, lower-dimensional halide perovskites including zero-dimensional(0D), onedimensional(1D), and two-dimensional(2D) perovskites have been employed as efficient passivators to boost the PCEs and durability of 3D-PSCs due to the high structural stability and superior resistance against moisture, heat and sunlight. Therefore, in order to achieve better understanding about the advantages and superiorities of combining low-dimensional perovskites with their 3D counterparts in improving the PCEs and durability of 3D-PSCs, the recent advances in the development and fabrication of mixeddimensional PSCs with 1D/0D perovskites as passivators are summarized and discussed in the review.The superiority of 1D/0D perovskites as passivators over 2D counterparts, the passivation mechanism and the methods of 1D/0D perovskites are also presented and discussed. Furthermore, the rules to choose1D/0D perovskites or relevant spacer cations are also emphasized. On this basis, several specific strategies to design and fabricate mixed-dimensional PSCs with 1D/0D perovskites are presented and discussed.Finally, the crucial challenges and future research directions of mixed-dimensional PSCs with 1D/0D perovskites as passivators are also proposed and discussed. This review will provide some useful insights for the future development of high-efficiency and durable mixed-dimensional PSCs. 展开更多
关键词 perovskite solar cells Mixed-dimensional Passivators Stability Power conversion efficiency
下载PDF
Propylamine hydrobromide passivated tin-based perovskites to efficient solar cells
8
作者 Xiaomeng Li Pengcheng Jia +7 位作者 Fanwen Meng Xingyu Zhang Yang Tang Bo Song Chang Gao Liang Qin Feng Teng Yanbing Hou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1965-1972,共8页
The development of tin-based devices with low toxicity is critical for the commercial viability of perovskite solar cells.However because tin halide is a stronger Lewis acid,its crystallization rate is extremely fast,... The development of tin-based devices with low toxicity is critical for the commercial viability of perovskite solar cells.However because tin halide is a stronger Lewis acid,its crystallization rate is extremely fast,resulting in the formation of numerous defects that affect the device performance of tin-based perovskite solar cells.Herein,propylamine hydrobromide(PABr)was added to the perovskite precursor solution as an additive to passivate defects and fabricate more uniform and dense perovskite films.Because propylamine cations are too large to enter the perovskite lattices,they only exist at the grain boundary to passivate surface defects and promote crystal growth in a preferred orientation.The PABr additive raises the average short-circuit current density from 19.45 to 25.47 mA·cm^(-2)by reducing carrier recombination induced by defects.Furthermore,the device’s long-term illumination stability is improved after optimization,and the hysteresis effect is negligible.The addition of PABr results in a power conversion efficiency of 9.35%. 展开更多
关键词 tin-based perovskite solar cells propylamine hydrobromide PASSIVATION crystallization
下载PDF
Antimony Potassium Tartrate Stabilizes Wide-Bandgap Perovskites for Inverted 4-T All-Perovskite Tandem Solar Cells with Efficiencies over 26%
9
作者 Xuzhi Hu Jiashuai Li +7 位作者 Chen Wang Hongsen Cui Yongjie Liu Shun Zhou Hongling Guan Weijun Ke Chen Tao Guojia Fang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期204-217,共14页
Wide-bandgap(WBG)perovskites have been attracting much attention because of their immense potential as a front light-absorber for tandem solar cells.However,WBG perovskite solar cells(PSCs)generally exhibit undesired ... Wide-bandgap(WBG)perovskites have been attracting much attention because of their immense potential as a front light-absorber for tandem solar cells.However,WBG perovskite solar cells(PSCs)generally exhibit undesired large open-circuit voltage(VOC)loss due to light-induced phase segregation and severe non-radiative recombination loss.Herein,antimony potassium tartrate(APTA)is added to perovskite precursor as a multifunctional additive that not only coordinates with unbonded lead but also inhibits the migration of halogen in perovskite,which results in suppressed non-radiative recombination,inhibited phase segregation and better band energy alignment.Therefore,a APTA auxiliary WBG PSC with a champion photoelectric conversion efficiency of 20.35%and less hysteresis is presented.They maintain 80%of their initial efficiencies under 100 mW cm^(-2)white light illumination in nitrogen after 1,000 h.Furthermore,by combining a semi-transparent WBG perovskite front cell with a narrow-bandgap tin–lead PSC,a perovskite/perovskite four-terminal tandem solar cell with an efficiency over 26%is achieved.Our work provides a feasible approach for the fabrication of efficient tandem solar cells. 展开更多
关键词 perovskite solar cell Tandem Wide bandgap Multifunctional additive
下载PDF
Regulation of excitation energy transfer in Sb-alloyed Cs_(4)MnBi_(2)Cl_(12) perovskites for efficient CO_(2) photoreduction to CO and water oxidation toward H_(2)O_(2)
10
作者 Haiwen Wei Zhen Li +7 位作者 Honglei Wang Yang Yang Pengfei Cheng Peigeng Han Ruiling Zhang Feng Liu Panwang Zhou Keli Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期18-24,I0001,共8页
Lead(Pb)-free halide perovskites have recently attracted increasing attention as potential catalysts for CO_(2) photoreduction to CO due to their potential to capture solar energy and drive catalytic reaction.However,... Lead(Pb)-free halide perovskites have recently attracted increasing attention as potential catalysts for CO_(2) photoreduction to CO due to their potential to capture solar energy and drive catalytic reaction.However,issues of the poor charge transfer still remain one of the main obstacles limiting their performance due to the overwhelming radiative and nonradiative charge-carrier recombination losses.Herein,Pb-free Sb-alloyed all-inorganic quadruple perovskite Cs_(4)Mn(Bi_(1-x)Sb_(x))_(2)Cl_(12)(0≤x≤1)is synthesized as efficient photocatalyst.By Sb alloying,the undesired relaxation of photogenerated electrons from conduction band to emission centers of[MnCl6]^(4-)is greatly suppressed,resulting in a weakened PL emission and enhanced charge transfer for photocatalyst.The ensuing Cs_(4)Mn(Bi_(1-x)Sb_(x))_(2)Cl_(12) photocatalyst accomplishes efficient conversion of CO_(2)into CO,accompanied by a surprising production of H_(2)O_(2),a high valueadded product associated with water oxidation.By optimizing Sb^(3+) concentration,a high CO evolution rate of 35.1μmol g^(-1)h^(-1)is achieved,superior to most other Pb and Pb-free halide perovskites.Our findings provide new insights into the mixed-cation alloying strategies for improved photocatalytic performance of Pb-free perovskites and shed light on the rational design of robust band structure toward efficient energy transfer. 展开更多
关键词 Pb-free perovskites Energy band modulation perovskite photocatalysis photocatalytic CO_(2)reduction Water oxidation to H_(2)O_(2)
下载PDF
Alternative lead-free mixed-valence double perovskites for high-efficiency photovoltaic applications
11
作者 Wenbo Li Yuheng Li +1 位作者 Zilong Zhang Peng Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期347-353,共7页
Lead-based organic-inorganic hybrid perovskites have exhibited great potential in photovoltaics,achieving power conversion efficiencies(PCEs) exceeding 25%.However,the toxicity of lead and the instability of these mat... Lead-based organic-inorganic hybrid perovskites have exhibited great potential in photovoltaics,achieving power conversion efficiencies(PCEs) exceeding 25%.However,the toxicity of lead and the instability of these materials under moist conditions pose significant barriers to large-scale production.To overcome these limitations,researchers have proposed mixed-valence double perovskites,where Cs_(2)Au~ⅠAu~ⅢI_6 is a particularly effective absorber due to its suitable band gap and high absorptance efficiency.To further extend the scope of these lead-free materials,we varied the trivalent gold ion and halogen anion in Cs_(2)Au~ⅠAu~ⅢI_6,resulting in 18 new structures with unique properties.Further,using first-principles calculations and elimination criteria,we identified four materials with ideal band gaps,small effective carrier mass,and strong anisotropic optical properties.According to theoretical modeling,Cs_(2)AuSbCl_6,Cs_(2)AuInCl_6,and Cs_(2)AuBiCl_6 are potential candidates for solar cell absorbers,with a spectroscopic limited maximum efficiency(SLME) of approximately 30% in a 0.25 μm-thick film.These three compounds have not been previously reported,and therefore,our work provides new insights into potential materials for solar energy conversion.We aim for this theoretical exploration of novel perovskites to guide future experiments and accelerate the development of high-performance photovoltaic devices. 展开更多
关键词 Mixed valence double perovskite Theoretical calculation Electronic configuration Photovoltaic performance
下载PDF
Comparative Performance Analysis of MAPbI3 and FAPbI3 Perovskites: Study of Optoelectronic Properties and Stability
12
作者 Idrissa Diomandé Amal Bouich +2 位作者 Aka Aka Hyacinthe Bernabe Mari Soucasse Aka Boko 《Modeling and Numerical Simulation of Material Science》 2023年第4期51-67,共17页
The exploitation of fossil resources to meet humanity’s energy needs is the root cause of the climate warming phenomenon facing the planet. In this context, non-carbon-based energies, such as photovoltaic energy, are... The exploitation of fossil resources to meet humanity’s energy needs is the root cause of the climate warming phenomenon facing the planet. In this context, non-carbon-based energies, such as photovoltaic energy, are identified as crucial solutions. Organic perovskites MAPbI<sub>3</sub> and FAPbI<sub>3</sub>, characterized by their abundance, low cost, and ease of synthesis, are emerging as candidates for study to enhance their competitiveness. It is within this framework that this article presents a comparative analysis of the performances of MAPbI<sub>3</sub> and FAPbI<sub>3</sub> perovskites in the context of photovoltaic devices. The analysis focuses on the optoelectronic characteristics and stability of these high-potential materials. The optical properties of perovskites are rigorously evaluated, including band gaps, photoluminescence, and light absorption, using UV-Vis spectroscopy and photoluminescence techniques. The crystal structure is characterized by X-ray diffraction, while film morphology is examined through scanning electron microscopy. The results reveal significant variations between the two types of perovskites, directly impacting the performance of resulting solar devices. Simultaneously, the stability of perovskites is subjected to a thorough study, exposing the materials to various environmental conditions, highlighting key determinants of their durability. Films of MAPbI<sub>3</sub> and FAPbI<sub>3</sub> demonstrate distinct differences in terms of topography, optical performance, and stability. Research has unveiled that planar perovskite solar cells based on FAPbI<sub>3</sub> offer higher photoelectric conversion efficiency, surpassing their MAPbI<sub>3</sub>-based counterparts in terms of performance. These advancements aim to overcome stability constraints and enhance the long-term durability of perovskites, ultimately aiming for practical application of these materials. This comprehensive comparative analysis provides an enlightened understanding of the optoelectronic performance and stability of MAPbI<sub>3</sub> and FAPbI<sub>3</sub> perovskites, which is critically important to guide future research and development of solar devices that are both more efficient and sustainable. 展开更多
关键词 perovskites FAPbI3 MAPbI3 Optoelectronic Properties PERFORMANCE
下载PDF
Influence of Organic Cations on the Crystal and Electronic Structures of Two-dimensional Lead Iodide Perovskites
13
作者 杜定谨 甘小燕 +3 位作者 LU Shun ZHENG Wei GUO Liling LIU Hanxing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期496-504,共9页
The crystal structures and electronic structures(including band gap,project density of states,partial charge density,effective mass and electron localization function)of the 2D lead iodide perovskites hybrids with dif... The crystal structures and electronic structures(including band gap,project density of states,partial charge density,effective mass and electron localization function)of the 2D lead iodide perovskites hybrids with different organic spacer cations of 4-fluorophenylethanaminium(4F-PEA^(+)),ethanolamine(EA^(+)),thienylethylamine(TEA^(+))were investigated using first-principles calculations.It was found the higher dipole moment,the stronger the hydrogen bonding between the organic amino and iodide in the inorganic layer,and the larger the[PbI_(6)]^(4-)octahedral distortions in these crystal structure.Further quantifying the degree of the distortions using OctaDist software showed that the distortion of adjacent[PbI_(6)]^(4-)octahedra had a decisive effect on the band gap.Specifically,the greater deviation of Pb-I-Pb bond angles from 180°,together with the larger distortion of multiple[PbI_(6)]^(4-)octahedron resulted in a wider band gap,which was verified by calculated band gap using different DFT methods.The results outlined the relationships of hydrogen bonding,ocathedra distortion and band structure in 2D perovskites,highlighting the importance of the cations on the structural tuning and optoelectronic properties. 展开更多
关键词 2D perovskites density functional theory(DFT) octahedral distortion 4F-PEA EA TEA
下载PDF
First Principle Study of Cesium-based Lead-free Halide Double Perovskites
14
作者 郑伟 甘小燕 +4 位作者 DU Dingjin WANG Yajie DAI Siqi GUO Liling LIU Hanxing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期520-529,共10页
Inorganic halide double perovskites A_(2)B'B"X_(6) have gained significant interests for their diverse composition,stable physicochemical properties,and potential for photoelectric applications.The influences... Inorganic halide double perovskites A_(2)B'B"X_(6) have gained significant interests for their diverse composition,stable physicochemical properties,and potential for photoelectric applications.The influences of trivalent and monovalent cations on the formation energy,decomposition energy,electronic structure and optical properties of cesium-based lead-free Cs^(+)_(2)B'B"Br_(6) (B'=Na^(+),In^(+)Cu^(+),or Ag^(+);B"=Bi^(3),Sb^(3+),In^(3+)) are systematically studied.In view of the analysis and results of the selected double perovskites,for the double perovskites with different B-site trivalent cation,the band gap increases in the order of Cs_(2)AgInBr_(6),Cs_(2)AgSbBr_(6) and Cs_(2)AgBiBr_(6),with Cs_(2)AgBiBr_(6) possessing the highest thermodynamic stability.Therefore,the Bi-based perovskites are further studied to elucidate the effect of monovalent cation on their stability and electronics.Results show that the thermodynamic stability rises in the sequence of Cs_(2)NaBiBr_(6),Cs_(2)InBiBr_(6),Cs_(2)AgBiBr_(6) and Cs_(2)CuBiBr_(6).Notably,Cs_(2)CuBiBr_(6) exhibits a relatively narrow and appropriate band gap of 1.4634 eV,together with the highest absorption coefficient than other compounds,suggesting that Cs_(2)CuBiBr_(6) is a promising light absorbing material that can be further explored experimentally and be applied to optoelectronic devices.Our research offers theoretical backing for the potential optoelectronic application of cesium-based lead-free halide double perovskites in solar energy conversion. 展开更多
关键词 lead-free double perovskites density functional theory Cs_(2)B'B"Br_(6) STABILITY electronic properties optical property STABILITY
下载PDF
Stabilizing perovskite precursors with the reductive natural amino acid for printable mesoscopic perovskite solar cells
15
作者 Wenjing Hu Jian Yang +9 位作者 Chuang Yang Xufeng Xiao Chaoyang Wang Zhaozhen Cui Qiaojiao Gao Jianhang Qi Minghao Xia Yaqiong Su Anyi Mei Hongwei Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期32-39,I0003,共9页
Solution processability significantly advances the development of highly-efficient perovskite solar cells.However,the precursor solution tends to undergo irreversible degradation reactions,impairing the device perform... Solution processability significantly advances the development of highly-efficient perovskite solar cells.However,the precursor solution tends to undergo irreversible degradation reactions,impairing the device performance and reproducibility.Here,we utilize a reductive natural amino acid,Nacetylcysteine(NALC),to stabilize the precursor solution for printable carbon-based hole-conductorfree mesoscopic perovskite solar cells.We find that I_(2) can be generated in the aged solution containing methylammonium iodide(MI) in an inert atmosphere and speed up the MA-FA^(+)(formamidinium) reaction which produces large-size cations and hinders the formation of perovskite phase.NALC effectively stabilizes the precursor via its sulfhydryl group which reduces I_(2) back to I^(-)and provides H^(+).The NALC-stabilized precursor which is aged for 1440 h leads to devices with a power conversion efficiency equivalent to 98% of that for devices prepared with the fresh precursor.Furthermore,NALC improves the device power conversion efficiency from 16.16% to 18.41% along with enhanced stability under atmospheric conditions by modifying grain boundaries in perovskite films and reducing associated defects. 展开更多
关键词 perovskite solar cells perovskite precursor Degradation STABILIZATION Reductive natural amino acid
下载PDF
Pressure-Induced Distinct Self-Trapped Exciton Emission in Sb^(3+)-Doped Cs_(2)NaInCl_(6)Double Perovskite
16
作者 冯友佳 陈亚平 +10 位作者 王乐瑶 王家祥 常断华 袁亦方 武敏 付瑞净 张丽丽 王庆林 王凯 郭海中 王玲瑞 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第6期18-43,共26页
The Cs_(2)NaInCl_(6)double perovskite is one of the most promising lead-free perovskites due to its exceptional stability and straightforward synthesis.However,it faces challenges related to inefficient photoluminesce... The Cs_(2)NaInCl_(6)double perovskite is one of the most promising lead-free perovskites due to its exceptional stability and straightforward synthesis.However,it faces challenges related to inefficient photoluminescence.Doping and high pressure are employed to tailor the optical properties of Cs_(2)NaInCl_(6).Herein,Sb^(3+)doped Cs_(2)NaInCl_(6)(Sb^(3+):Cs_(2)NaInCl_(6))was synthesized and it exhibits blue emission with a photoluminescence quantum yield of up to 37.3%.Further,by employing pressure tuning,a blue stable emission under a very wide range from 2.7 GPa to 9.8 GPa is realized in Sb^(3+):Cs_(2)NaInCl_(6).Subsequently,the emission intensity of Sb^(3+):Cs_(2)NaInCl_(6)experiences a significant increase(3.3 times)at 19.0 GPa.It is revealed that the pressure-induced distinct emissions can be attributed to the carrier self-trapping and detrapping between Cs_(2)NaInCl_(6)and Sb^(3+).Notably,the lattice compression in the cubic phase inevitably modifies the band gap of Sb^(3+):Cs_(2)NaInCl_(6).Our findings provide valuable insights into effects of the high pressure in further boosting unique emission characteristics but also offer promising opportunities for development of doped double perovskites with enhanced optical functionalities. 展开更多
关键词 synthesis. perovskitE TRAPPING
下载PDF
Effect of drying methods on perovskite films and solar cells
17
作者 Ling Liu Chuantian Zuo +3 位作者 Guang-Xing Liang Hua Dong Jingjing Chang Liming Ding 《Journal of Semiconductors》 EI CAS CSCD 2024年第1期1-5,共5页
The high efficiency,solution processibility,and flexibility of perovskite solar cells make them promising candidates for the photovoltaic industry[1−8].The deposition method is one of the most critical factors that af... The high efficiency,solution processibility,and flexibility of perovskite solar cells make them promising candidates for the photovoltaic industry[1−8].The deposition method is one of the most critical factors that affect the performance of perovskite films.Various deposition methods have been developed to make perovskite films,including spin-coating,slotdie coating. 展开更多
关键词 perovskitE FILMS CRITICAL
下载PDF
Chemical vapor deposition for perovskite solar cells and modules
18
作者 Zhihao Tao Yuxuan Song +2 位作者 Baochang Wang Guoqing Tong Liming Ding 《Journal of Semiconductors》 EI CAS CSCD 2024年第4期1-4,共4页
Metal halide perovskites are promising materials for solar cells because of high power conversion efficiency(PCE),tun-able bandgap,high defect tolerance,long carrier diffusion length,and low-cost fabrication[1-7].The ... Metal halide perovskites are promising materials for solar cells because of high power conversion efficiency(PCE),tun-able bandgap,high defect tolerance,long carrier diffusion length,and low-cost fabrication[1-7].The PCE for perovskite solar cells(PSCs)reaches 26.14%for single-junction cells,29.1%for perovskite/perovskite tandem cells and 33.9%for perovskite/silicon tandem cells,being comparable to that for silicon and other thin-film solar cells[8-10].Perovskite solar cells have been made by solution methods including spin-coat-ing,blade coating and printing[11,12]. 展开更多
关键词 perovskitE BLADE FILM
下载PDF
Author Correction: ITO-free silicon-integrated perovskite electrochemical cell for light-emission and light-detection
19
作者 Maria Baeva Dmitry Gets +8 位作者 Artem Polushkin Aleksandr Vorobyov Aleksandr Goltaev Vladimir Neplokh Alexey Mozharov Dmitry VKrasnikov Albert GNasibulin Ivan Mukhin Sergey Makarov 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第3期50-50,共1页
Correction to:Opto-Electronic Advances https://doi.org/10.29026/oea.2023.220154 published online 26 April 2023 After the publication of this article1,it was brought to our attention that calculations of the PeLEC devi... Correction to:Opto-Electronic Advances https://doi.org/10.29026/oea.2023.220154 published online 26 April 2023 After the publication of this article1,it was brought to our attention that calculations of the PeLEC device elec-troluminescent(EL)efficiency contained a mistake,leading to an inaccurate quantity value.The device’s maxim-um EL efficiency constitutes not‘~120 klm/W’but‘4.3 lm/W’instead.Correction details are listed below. 展开更多
关键词 value. perovskitE LISTED
下载PDF
Room-temperature synthesis of full-component APbX_(3)perovskite nanocrystal inks for optoelectronic applications
20
作者 Xinyu Zhao Du Li +4 位作者 Xuliang Zhang Hehe Huang Chenyu Zhao Wanli Ma Jianyu Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期87-94,共8页
Lead halide perovskite nanocrystals(PNCs)have received great research interests due to their excellent optoelectronic properties.However,high temperature,inert gas protection and insulating long-chain ligands are used... Lead halide perovskite nanocrystals(PNCs)have received great research interests due to their excellent optoelectronic properties.However,high temperature,inert gas protection and insulating long-chain ligands are used during the conventional hot-injection synthesis of PNCs,which limits their practical applications.In this work,we first develop a simple and scalable polar-solvent-free method for the preparation of full-component APbX_(3)(A=Cs,methylammonium(MA),formamidinium(FA),X=Cl,Br,I)PNCs under ambient condition.Through an exothermic reaction between butylamine(BA)and propionic acid(PA)short ligands,the PbX_(2) precursors could be well dissolved without use of any polar solvent.Meanwhile,the relatively lower growth rate of PNCs in our room-temperature reaction enables us to modulate the synthetic procedure to enhance the scalability(40-fold)and achieve large-scale synthesis.The resultant short ligands passivated PNC inks are compatible with varying solution depositing technique like spray coating for large-area film.Finally,we showcase that adopting the as-prepared MAPbI_(3) PNC inks,a self-powered photodetector is fabricated and shows a high photoresponsivity.These results demonstrate that our ambient-condition synthetic approach can accelerate the preparation of tunable and ready-to-use PNCs towards commercial optoelectronic applications. 展开更多
关键词 Room-temperaturesynthesis perovskite nanocrystals Short-chainligands Large-scale PHOTODETECTOR
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部