The development of insertion-type anodes is the key to designing“rocking chair”zinc-ion batteries.However,there is rare report on high mass loading anode with high performances.Here,{001}-oriented Bi OCl nanosheets ...The development of insertion-type anodes is the key to designing“rocking chair”zinc-ion batteries.However,there is rare report on high mass loading anode with high performances.Here,{001}-oriented Bi OCl nanosheets with Sn doping are proposed as a promising insertion-type anode.The designs of cross-linked CNTs conductive network,{001}-oriented nanosheet,and Sn doping significantly enhance ion/electron transport,proved via experimental tests and theoretical calculations(density of states and diffusion barrier).The H^(+)/Zn^(2+)synergistic co-insertion mechanism is proved via ex situ XRD,Raman,XPS,and SEM tests.Accordingly,this optimized electrode delivers a high reversible capacity of 194 m A h g^(-1)at 0.1 A g^(-1)with a voltage of≈0.37 V and an impressive cyclability with 128 m A h g^(-1)over 2500 cycles at 1 A g^(-1).It also shows satisfactory performances at an ultrahigh mass loading of 10 mg cm^(-2).Moreover,the Sn-Bi OCl//MnO_(2)full cell displays a reversible capacity of 85 m A h g^(-1)at 0.2 A g^(-1)during cyclic test.展开更多
This study used a Polyindole in combination with TiO2 nanocatalyst as an efficient heterogeneous catalyst to carry out a multi-component Hantzsch reaction involving different aromatic aldehydes with methyl acetoacetat...This study used a Polyindole in combination with TiO2 nanocatalyst as an efficient heterogeneous catalyst to carry out a multi-component Hantzsch reaction involving different aromatic aldehydes with methyl acetoacetate, and aqueous ammonium to create 1,4-dihydropyridine derivatives under solvent free condition at ambient temperature. A broad range of aldehydes and methyl acetoacetates, ranging from heteroaromatic to polyaromatic one, with high level of functional group tolerance can be used to provide the desired products possessing relevant medicinal moiety in high yields. This technology has prospective advantages over current protocols, including the utilization of a cheap, stable, recyclable, and safe catalyst, quicker reaction times with higher yields and simple product isolation.展开更多
The simulation by the Monte Carlo method executed by the software PyPENELOPE proved effective to specify the particle propagation characteristics by calculating the absorption fractions, backscattering and transmissio...The simulation by the Monte Carlo method executed by the software PyPENELOPE proved effective to specify the particle propagation characteristics by calculating the absorption fractions, backscattering and transmission of electrons and secondary photons under the incidence of 0.5 to 20 KeV range of primary electrons. More than 99.9% of the primary electrons were transmitted in the 125 nm thick MgO/TiO<sub>2</sub> material at 20 KeV. This occurred because several interactions took place in the transmitted primary irradiation such as characteristic, fluorescence, and bremsstrahlung produced when of the occupation of the KL3, KL2, KM3, and KM2 shell and sub-shell of titanium and magnesium which are the elements with a high atomic number in the material. The transmission particle characteristic of this material is therefore an indicator capable of improving the electrical performance and properties of the sensor.展开更多
This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting co...This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting composite fibers exhibited a sponge-like structure with embedded TiO<sub>2</sub> nanoparticles within a polymer matrix. Their photocatalytic performance for ammonia removal from aqueous solutions under UV-A light exposure was thoroughly investigated. The findings revealed that PeTi8 composite fibers displayed superior adsorption capacity compared to other samples. Moreover, the study explored the impact of pH, light intensity, and catalyst dosage on the photocatalytic degradation of ammonia. Adsorption equilibrium isotherms closely followed the Langmuir model, with the results indicating a correlation between qm values of 2.49 mg/g and the porous structure of the adsorbents. The research underscored the efficacy of TiO<sub>2</sub> composite fibers in the photocatalytic removal of aqueous under UV-A light. Notably, increasing the distance between the photocatalyst and the light source resulted in de-creased hydroxyl radical concentration, influencing photocatalytic efficiency. These findings contribute to our understanding of TiO<sub>2</sub> composite fibers as promising photocatalysts for ammonia removal in water treatment applications.展开更多
Sn-doped In2O3 (ITO) nanopowders were prepared in ethanol solvent by solvothermal process. The effects of the solvothermal temperature, coprecipitation pH value and SnO2 content on the products phase and microwave abs...Sn-doped In2O3 (ITO) nanopowders were prepared in ethanol solvent by solvothermal process. The effects of the solvothermal temperature, coprecipitation pH value and SnO2 content on the products phase and microwave absorption were investigated by X-ray diffractometry and microwave reflectance. ITO nanopowders with cubic structure can be respectively prepared at 250 and 270 ℃ for 6 h. The prepared product is InOOH or the mixture of InOOH and In3Sn4O12 when the solvothermal temperature is below 250℃. With rising solvothermal temperature and prolonging time, the absorption of the ITO powders gradually decreases. The products are ITO nanopowders by coprecipitating at pH=9 or 11, but ITO powders with Sn3O4 at pH=6. The absorption of powders prepared at pH=6 is better than that at any other pH value. The products are all ITO nanopowders and crystal size reduces with increasing SnO2 content. The microwave absorption of ITO nanopowders with SnO2 content of 8% (mass fraction) is the best among samples with different SnO2 contents.展开更多
TiO_(2)is the dominant and most widely researched photocatalyst for environmental remediation,however,the drawbacks,such as only responding to UV light(<5%of sunlight),low charge separation efficiency,and difficult...TiO_(2)is the dominant and most widely researched photocatalyst for environmental remediation,however,the drawbacks,such as only responding to UV light(<5%of sunlight),low charge separation efficiency,and difficulties in recycling,have severely hindered its practical application.Herein,we synthesized magnetically separable Fe_(3)O_(4)@MoS_(2)@mesoporous TiO_(2)(FMmT)photocatalysts via a simple,green,and template-free solvothermal method combined with ultrasonic hydrolysis.It is found that FMmT possesses a high specific surface area(55.09 m2·g−1),enhanced visible-light responsiveness(~521 nm),and remarkable photogenerated charge separation efficiency.In addition,the photocatalytic degradation efficiencies of FMmT for methylene blue(MB),rhodamine B(RhB),and tetracycline(TC)are 99.4%,98.5%,and 89.3%within 300 min,respectively.The corresponding degradation rates are 4.5,4.3,and 3.1 times higher than those of pure TiO_(2)separately.Owing to the high saturation magnetization(43.1 A·m^(2)·kg^(−1)),FMmT can achieve effective recycling with an applied magnetic field.The improved photocatalytic activity is closely related to the effective transport of photogenerated electrons by the active interlayer MoS_(2) and the electron–hole separation caused by the MoS_(2)@TiO_(2)heterojunction.Meanwhile,the excellent light-harvesting ability and abundant reactive sites of the mesoporous TiO_(2)shell further boost the photocatalytic efficiency of FMmT.This work provides a new approach and some experimental basis for the design and performance improvement of magnetic photocatalysts by innovatively incorporating MoS2 as the active interlayer and integrating it with a mesoporous shell.展开更多
基金supported by the Natural Science Foundation of China (52102312,51672234,and 52072325)the Natural Science Foundation of Hunan Province of China (2021JJ40528)+2 种基金the China Postdoctoral Science Foundation (2020M682581)the Macao Young Scholars Program (AM2021011)the College Student Innovation and Entrepreneurship Training Program (S202210530051)。
文摘The development of insertion-type anodes is the key to designing“rocking chair”zinc-ion batteries.However,there is rare report on high mass loading anode with high performances.Here,{001}-oriented Bi OCl nanosheets with Sn doping are proposed as a promising insertion-type anode.The designs of cross-linked CNTs conductive network,{001}-oriented nanosheet,and Sn doping significantly enhance ion/electron transport,proved via experimental tests and theoretical calculations(density of states and diffusion barrier).The H^(+)/Zn^(2+)synergistic co-insertion mechanism is proved via ex situ XRD,Raman,XPS,and SEM tests.Accordingly,this optimized electrode delivers a high reversible capacity of 194 m A h g^(-1)at 0.1 A g^(-1)with a voltage of≈0.37 V and an impressive cyclability with 128 m A h g^(-1)over 2500 cycles at 1 A g^(-1).It also shows satisfactory performances at an ultrahigh mass loading of 10 mg cm^(-2).Moreover,the Sn-Bi OCl//MnO_(2)full cell displays a reversible capacity of 85 m A h g^(-1)at 0.2 A g^(-1)during cyclic test.
文摘This study used a Polyindole in combination with TiO2 nanocatalyst as an efficient heterogeneous catalyst to carry out a multi-component Hantzsch reaction involving different aromatic aldehydes with methyl acetoacetate, and aqueous ammonium to create 1,4-dihydropyridine derivatives under solvent free condition at ambient temperature. A broad range of aldehydes and methyl acetoacetates, ranging from heteroaromatic to polyaromatic one, with high level of functional group tolerance can be used to provide the desired products possessing relevant medicinal moiety in high yields. This technology has prospective advantages over current protocols, including the utilization of a cheap, stable, recyclable, and safe catalyst, quicker reaction times with higher yields and simple product isolation.
文摘The simulation by the Monte Carlo method executed by the software PyPENELOPE proved effective to specify the particle propagation characteristics by calculating the absorption fractions, backscattering and transmission of electrons and secondary photons under the incidence of 0.5 to 20 KeV range of primary electrons. More than 99.9% of the primary electrons were transmitted in the 125 nm thick MgO/TiO<sub>2</sub> material at 20 KeV. This occurred because several interactions took place in the transmitted primary irradiation such as characteristic, fluorescence, and bremsstrahlung produced when of the occupation of the KL3, KL2, KM3, and KM2 shell and sub-shell of titanium and magnesium which are the elements with a high atomic number in the material. The transmission particle characteristic of this material is therefore an indicator capable of improving the electrical performance and properties of the sensor.
文摘This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting composite fibers exhibited a sponge-like structure with embedded TiO<sub>2</sub> nanoparticles within a polymer matrix. Their photocatalytic performance for ammonia removal from aqueous solutions under UV-A light exposure was thoroughly investigated. The findings revealed that PeTi8 composite fibers displayed superior adsorption capacity compared to other samples. Moreover, the study explored the impact of pH, light intensity, and catalyst dosage on the photocatalytic degradation of ammonia. Adsorption equilibrium isotherms closely followed the Langmuir model, with the results indicating a correlation between qm values of 2.49 mg/g and the porous structure of the adsorbents. The research underscored the efficacy of TiO<sub>2</sub> composite fibers in the photocatalytic removal of aqueous under UV-A light. Notably, increasing the distance between the photocatalyst and the light source resulted in de-creased hydroxyl radical concentration, influencing photocatalytic efficiency. These findings contribute to our understanding of TiO<sub>2</sub> composite fibers as promising photocatalysts for ammonia removal in water treatment applications.
基金Project(2001BA901A09) supported by the National Western Development and Technique Foundation during the 10th Five-Year PlaPeriod
文摘Sn-doped In2O3 (ITO) nanopowders were prepared in ethanol solvent by solvothermal process. The effects of the solvothermal temperature, coprecipitation pH value and SnO2 content on the products phase and microwave absorption were investigated by X-ray diffractometry and microwave reflectance. ITO nanopowders with cubic structure can be respectively prepared at 250 and 270 ℃ for 6 h. The prepared product is InOOH or the mixture of InOOH and In3Sn4O12 when the solvothermal temperature is below 250℃. With rising solvothermal temperature and prolonging time, the absorption of the ITO powders gradually decreases. The products are ITO nanopowders by coprecipitating at pH=9 or 11, but ITO powders with Sn3O4 at pH=6. The absorption of powders prepared at pH=6 is better than that at any other pH value. The products are all ITO nanopowders and crystal size reduces with increasing SnO2 content. The microwave absorption of ITO nanopowders with SnO2 content of 8% (mass fraction) is the best among samples with different SnO2 contents.
基金financially supported by the National Key R & D Projects (Nos. 2021YFC1910504, 2019YFC1907101, 2019YFC1907103, and 2017YFB0702304)the Key R & D Project in Ningxia Hui Autonomous Region, China (No. 2020BCE01001)+6 种基金the Key and Normal Projects National Natural Science Foundation of China (Nos. U2002212 and 51672024)the Xijiang Innovation and Entrepreneurship Team (No. 2017A0109004)the Fundamental Research Funds for the Central Universities (Nos. FRF-BD-20-24A, FRF-TP-20-031A1, FRF-IC-19-017Z, FRF-GF-19-032B, and 06500141)the Integration of Green Key Process Systems MIIT, Natural Science Foundation of Beijing Municipality (No. 2214073)the Guangdong Basic and Applied Research Foundation, China (No. 2020A1515110408)the Foshan Science and Technology Innovation Special Foundation, China (No. BK21BE002)the Postdoctor Research Foundation of Shunde Graduate School of University of Science and Technology Beijing (No. 2020BH004)
文摘TiO_(2)is the dominant and most widely researched photocatalyst for environmental remediation,however,the drawbacks,such as only responding to UV light(<5%of sunlight),low charge separation efficiency,and difficulties in recycling,have severely hindered its practical application.Herein,we synthesized magnetically separable Fe_(3)O_(4)@MoS_(2)@mesoporous TiO_(2)(FMmT)photocatalysts via a simple,green,and template-free solvothermal method combined with ultrasonic hydrolysis.It is found that FMmT possesses a high specific surface area(55.09 m2·g−1),enhanced visible-light responsiveness(~521 nm),and remarkable photogenerated charge separation efficiency.In addition,the photocatalytic degradation efficiencies of FMmT for methylene blue(MB),rhodamine B(RhB),and tetracycline(TC)are 99.4%,98.5%,and 89.3%within 300 min,respectively.The corresponding degradation rates are 4.5,4.3,and 3.1 times higher than those of pure TiO_(2)separately.Owing to the high saturation magnetization(43.1 A·m^(2)·kg^(−1)),FMmT can achieve effective recycling with an applied magnetic field.The improved photocatalytic activity is closely related to the effective transport of photogenerated electrons by the active interlayer MoS_(2) and the electron–hole separation caused by the MoS_(2)@TiO_(2)heterojunction.Meanwhile,the excellent light-harvesting ability and abundant reactive sites of the mesoporous TiO_(2)shell further boost the photocatalytic efficiency of FMmT.This work provides a new approach and some experimental basis for the design and performance improvement of magnetic photocatalysts by innovatively incorporating MoS2 as the active interlayer and integrating it with a mesoporous shell.