One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including ...One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including nanoribbons,nanowires, comb-like structures, and superlattices, with rich optical microcavity modes, excellent optical properties, and a wide range of application fields. This article reviews the research progress of various micrometer structures of Sn-doped CdS, systematically elaborates the effects of different growth conditions on the preparation of Sn-doped CdS micro-nano structures, as well as the spectral characteristics of these structures and their potential applications in certain fields. With the continuous progress of nanotechnology, it is expected that Sn-doped CdS micro-nano structures will achieve more breakthroughs in the field of optoelectronics and form cross-integration with other fields, jointly promoting scientific, technological, and social development.展开更多
The development of insertion-type anodes is the key to designing“rocking chair”zinc-ion batteries.However,there is rare report on high mass loading anode with high performances.Here,{001}-oriented Bi OCl nanosheets ...The development of insertion-type anodes is the key to designing“rocking chair”zinc-ion batteries.However,there is rare report on high mass loading anode with high performances.Here,{001}-oriented Bi OCl nanosheets with Sn doping are proposed as a promising insertion-type anode.The designs of cross-linked CNTs conductive network,{001}-oriented nanosheet,and Sn doping significantly enhance ion/electron transport,proved via experimental tests and theoretical calculations(density of states and diffusion barrier).The H^(+)/Zn^(2+)synergistic co-insertion mechanism is proved via ex situ XRD,Raman,XPS,and SEM tests.Accordingly,this optimized electrode delivers a high reversible capacity of 194 m A h g^(-1)at 0.1 A g^(-1)with a voltage of≈0.37 V and an impressive cyclability with 128 m A h g^(-1)over 2500 cycles at 1 A g^(-1).It also shows satisfactory performances at an ultrahigh mass loading of 10 mg cm^(-2).Moreover,the Sn-Bi OCl//MnO_(2)full cell displays a reversible capacity of 85 m A h g^(-1)at 0.2 A g^(-1)during cyclic test.展开更多
Sn-doped CdTe polycrystalline films were successfully deposited on ITO glass substrates by close space sublimation. The effects of Sn-doping on the microstructure, surface morphology, and optical properties of polycry...Sn-doped CdTe polycrystalline films were successfully deposited on ITO glass substrates by close space sublimation. The effects of Sn-doping on the microstructure, surface morphology, and optical properties of polycrys- talline films were studied using X-ray diffraction, scanning electron microscopy, and ultraviolet-visible spectrophotometry, respectively. The results show that the lower molar ratio of Sn and CdTe conduces to a strongly preferential orientation of (111) in films and a larger grain size, which indicates that the crystallinity of films can be improved by appropriate Sn-doping. As the molar ratio of Sn and CdTe increases, the preferential orientation of (111) in films becomes weaker, the grain size becomes smaller, and the crystal boundary becomes indistinct, which indicates that the crystallization growth of films is incomplete. However, as the Sn content increases, optical absorption becomes stronger in the visible region. In summary, a strongly preferential orientation of (111) in films and a larger grain size can be obtained by appropriate Sn-doping (molar ratio of Sn : CdTe = 0.06 : 1), while the film retains a relatively high optical absorption in the visible region. However, Sn-doping has no obvious influence on the energy gap of CdTe films.展开更多
The electronic structures and optical properties of β-Ga_2O_3 and Si-and Sn-doped β-Ga_2O_3 are studied using the GGA + U method based on density functional theory. The calculated bandgap and Ga 3d-state peak of β-...The electronic structures and optical properties of β-Ga_2O_3 and Si-and Sn-doped β-Ga_2O_3 are studied using the GGA + U method based on density functional theory. The calculated bandgap and Ga 3d-state peak of β-Ga_2O_3 are in good agreement with experimental results. Si-and Sn-doped β-Ga_2O_3 tend to form under O-poor conditions, and the formation energy of Si-doped β-Ga_2O_3 is larger than that of Sn-doped β-Ga_2O_3 because of the large bond length variation between Ga–O and Si–O. Si-and Sn-doped β-Ga_2O_3 have wider optical gaps than β-Ga_2O_3, due to the Burstein–Moss effect and the bandgap renormalization effect. Si-doped β-Ga_2O_3 shows better electron conductivity and a higher optical absorption edge than Sn-doped β-Ga_2O_3, so Si is more suitable as a dopant of n-type β-Ga_2O_3, which can be applied in deep-UV photoelectric devices.展开更多
Sn-doped In2O3 (ITO) nanopowders were prepared in ethanol solvent by solvothermal process. The effects of the solvothermal temperature, coprecipitation pH value and SnO2 content on the products phase and microwave abs...Sn-doped In2O3 (ITO) nanopowders were prepared in ethanol solvent by solvothermal process. The effects of the solvothermal temperature, coprecipitation pH value and SnO2 content on the products phase and microwave absorption were investigated by X-ray diffractometry and microwave reflectance. ITO nanopowders with cubic structure can be respectively prepared at 250 and 270 ℃ for 6 h. The prepared product is InOOH or the mixture of InOOH and In3Sn4O12 when the solvothermal temperature is below 250℃. With rising solvothermal temperature and prolonging time, the absorption of the ITO powders gradually decreases. The products are ITO nanopowders by coprecipitating at pH=9 or 11, but ITO powders with Sn3O4 at pH=6. The absorption of powders prepared at pH=6 is better than that at any other pH value. The products are all ITO nanopowders and crystal size reduces with increasing SnO2 content. The microwave absorption of ITO nanopowders with SnO2 content of 8% (mass fraction) is the best among samples with different SnO2 contents.展开更多
While the electrochemical nitrogen reduction reaction(NRR) represents a prospective blueprint for environmentally renewable ammonia generation,it has yet to overcome the limitations of weak activity and inferior selec...While the electrochemical nitrogen reduction reaction(NRR) represents a prospective blueprint for environmentally renewable ammonia generation,it has yet to overcome the limitations of weak activity and inferior selectivity.In this regard,surface modification tactic was constructed to markedly enhance the activity and selectivity via introducing Sn atoms into the surface of defective cerium oxide(denoted as Sn-CeO_(2-x)) as the active and robust electrocatalyst for NRR under benign environment.The introduction of Sn atoms in CeO_(2-x)can not only inhibit the HER activity of the catalyst but also modulate the electronic structure of ceria and optimize N-Ce interaction,thus enhancing NRR activity and selectivity.Outperforming all previous CeO_(2)-based NRR catalysts,this catalyst has demonstrated an ammonia yield rate of 41.1 μg mg_(cat)^(-1) h^(-1) and an exceptional Faradic efficiency of 35.3%.This work presents a viable approach for the development of advanced NRR electrocatalysts.展开更多
In order to improve the electrochemical performance and thermal stability of Li1.05Co1/3Nil/3Mnl/302 materials, Lil.05CO0.3 Ni0.35Mno.3Mo.0502(M=Ge,Sn) cathode materials were synthesized via co-precipitation method....In order to improve the electrochemical performance and thermal stability of Li1.05Co1/3Nil/3Mnl/302 materials, Lil.05CO0.3 Ni0.35Mno.3Mo.0502(M=Ge,Sn) cathode materials were synthesized via co-precipitation method. The structure, electrochemical performance and thermal stability were characterized by X-ray diffraction(XRD), charge/discharge cycling, cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and differential scanning calorimetry(DSC). ESEM showed that Sn-doped and Ge- doped slightly increased the size of grains. XRD and CV showed that Sn-doped and Ge-doped powders were homogeneous and had the better layered structure than the bare one. Sn-doped and Ge-doped improved high rate discharge capacity and cycle-life performance. The reason of the better cycling performance of the doped one was the increasing of lithium-ion diffusion rate and charge transfer rate. Sn-doped and Ge-doped also improved the mateials thermal stability.展开更多
All-inorganic perovskite solar cells(PSCs) have potential to pass the stability international standard of IEC61215:2016 but cannot deliver high performance and stability due to the poor interface contact. In this pape...All-inorganic perovskite solar cells(PSCs) have potential to pass the stability international standard of IEC61215:2016 but cannot deliver high performance and stability due to the poor interface contact. In this paper, Sn-doped TiO_(2)(Ti_(1-x)Sn_(x)O_(2)) ultrathin nanoparticles are prepared for electron transport layer(ETL) by solution process. The ultrathin Ti_(1-x)Sn_(x)O_(2) nanocrystals have greatly improved interface contact due to the facile film formation, good conductivity and high work function. The all-inorganic inverted NiOx/CsPbI_(2)Br/Ti_(1-x)Sn_(x)O_(2)p-i-n device shows a power conversion efficiency(PCE) of 14.0%. We tested the heat stability, light stability and light-heat stability. After stored in 85℃ for 65 days, the inverted PSCs still retains 98% of initial efficiency. Under continuous standard one-sun illumination for 600 h,there is no efficiency decay, and under continuous illumination at 85℃ for 200 h, the device still retains 85% of initial efficiency. The 1.0 cm^(2) device of inverted structure shows a PCE of up to 11.2%. The ultrathin Ti_(1-x)Sn_(x)O_(2)is promising to improve the scalability and stability and thus increase the commercial prospect.展开更多
At present,there have been some reports on the application of metal phase selenide(1T-MSe_(2))in the field of energy storage.In this manuscript,a stable Sn-doped metal phase tungsten selenide(1T-WSe_(2)-Sn)was elabora...At present,there have been some reports on the application of metal phase selenide(1T-MSe_(2))in the field of energy storage.In this manuscript,a stable Sn-doped metal phase tungsten selenide(1T-WSe_(2)-Sn)was elaborately fabricated in situ by a simple calcination technique.N-doping was introduced by employing chitosan as precursor and nanoreactor,the Sn-doping induces 1T phase of WSe_(2)and enlarges the layer space to promote the electron/ion transport and structural stability.The optimized 1T-WSe_(2)-Sn electrode delivers prominent cycling lifespan(285 mAh·g^(-1)at 1.0 A·g^(-1)after 900 cycles)along with decent rate capability when applied as an anode of sodium ion batteries(SIBs).The specific capacity was determined to be of 460 mAh·g^(-1)at 0.1 A·g^(-1)after 100cycles.It also displays superior capacity of 183 mAh·g^(-1)at0.5 A·g^(-1)for 200 cycles when paired with Na_(3)V_(2)(PO_(4))_(3)cathode.Applied as the anode for potassium ion batteries(PIBs),it exhibits a satisfactory specific capacity of 345mAh·g^(-1)at 0.1 A·g^(-1)after 50 cycles.展开更多
Ga_(2)O_(3)has been regarded as a promising material for solar-blind detection due to its ultrawide bandgap and low growth cost.Although semiconductor microwires(MWs)possess unique optical and electronic characteristi...Ga_(2)O_(3)has been regarded as a promising material for solar-blind detection due to its ultrawide bandgap and low growth cost.Although semiconductor microwires(MWs)possess unique optical and electronic characteristics,the performances of photodetectors developed from Ga_(2)O_(3)MWs are still less than satisfactory.Herein,we demonstrate high-performance solar-blind photodetectors based on Sn-doped Ga_(2)O_(3)MWs,possessing a light/dark current ratio of 107 and a responsivity of 2,409 A/W at 40 V.Moreover,a 1×10 solar-blind photodetector linear array is developed based on the Sn-doped Ga_(2)O_(3)MWs via a patternedelectrodes method.And clear solar-blind images are obtained by using the photodetector array as the imaging unit of a solarblind imaging system.The results provide a convenient way to construct high-performance solar-blind photodetector arrays based on Ga_(2)O_(3)MWs,and thus may push forward their future applications.展开更多
Sn-doped ZnO particles were successfully synthesized by chemical co-precipitation method.Their morphology,phase,microstructure and infrared emissivity were characterized.The results show that the Sn-doped ZnO particle...Sn-doped ZnO particles were successfully synthesized by chemical co-precipitation method.Their morphology,phase,microstructure and infrared emissivity were characterized.The results show that the Sn-doped ZnO particles are of ellipsoid shape,their crystalline structure changed with thermal process temperature,the optimal thermal process temperature and Sn-doped proportion are 1000℃ and 15%,respectively,the minimum emissivity values are 0.42,0.28,0.46 and 0.48 corresponding to the infrared wavelengths of 0~∞,3~5,8~14 and 14~20 μm,which indicates that the Sn-doped ZnO particles have the application potential as low infrared emissivity material.展开更多
The structural properties, band structures and densities of states of Sn-doped Ga1.375In0.625O3 with a Sn atom substituting for the Ga atom or a Sn atom substituting for the In atom are calculated by using the firstpr...The structural properties, band structures and densities of states of Sn-doped Ga1.375In0.625O3 with a Sn atom substituting for the Ga atom or a Sn atom substituting for the In atom are calculated by using the firstprinciples method. The substitution of the Sn atom for the Ga atom in Ga1.375In0.625O3(Ga1.25In0.625Sn0.125O3/has larger lattice parameters and stronger Sn–O ionic bonds than that of the substitutional doping of the Sn atom for the In atom in Ga1.375In0.625O3(Ga1.375In0.5Sn0.125O3/. Results show that the Sn atom is preferentially substituted for the In atom in Sn-doped Ga1.375In0.625O3. Sn-doped Ga1.375In0.625O3 exhibits n-type metallic conductivity,and the impurity bands are mainly provided by the Sn 5s states. The optical band gap of Ga1.375In0.5Sn0.125O3is larger than that of Ga1.25In0.625Sn0.125O3. Ga1.25In0.625Sn0.125O3 has a smaller electron effective mass and a slightly larger mobility. However, Ga1.375In0.5Sn0.125O3 has a larger relative electron number and a slightly higher conductivity.展开更多
The specific capacities and power performances of conventional cathode materials are still needed to improve in order to meet the demand for electrical vehicles.Li-rich layered oxide delivers a high specific capacity,...The specific capacities and power performances of conventional cathode materials are still needed to improve in order to meet the demand for electrical vehicles.Li-rich layered oxide delivers a high specific capacity,but poor rate performances.Chemical doping is an effective way to address this challenge due to the expanded crystal lattice.Unlike a single ion substitution in the literature,here Li-rich layered oxides were doped by Sn and K to achieve the favorite rate performance,where Sn and K were assumed to replace transition metal ion and Li ion,respectively.Results indicate the co-doped samples result in an increasing capacity retention by more than 40%from 107.9(contrast sample)to 151.5 mAh g^(-1)(co-doped sample)at 10 C-rate.Electrochemical impedance spectroscopy(EIS)and calculated diffusion coefficient of Li^(+) also confirmed the favorite rate performances for co-doped sample.Combining results of Rietveld structure refinement,we proposed that the reason for rate performances comes from the enlarged crystal lattices,which provides a smooth diffusion tunnel for Lithium ions during the charge/discharge processes.The as-adopted method provides a possibility to achieve the improved rate performances by co-doping big-size ions at the different crystal sites.展开更多
基金supported by National Natural Science Foundation of China (52275551)Shanxi Scholarship Council of China (2021-117)。
文摘One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including nanoribbons,nanowires, comb-like structures, and superlattices, with rich optical microcavity modes, excellent optical properties, and a wide range of application fields. This article reviews the research progress of various micrometer structures of Sn-doped CdS, systematically elaborates the effects of different growth conditions on the preparation of Sn-doped CdS micro-nano structures, as well as the spectral characteristics of these structures and their potential applications in certain fields. With the continuous progress of nanotechnology, it is expected that Sn-doped CdS micro-nano structures will achieve more breakthroughs in the field of optoelectronics and form cross-integration with other fields, jointly promoting scientific, technological, and social development.
基金supported by the Natural Science Foundation of China (52102312,51672234,and 52072325)the Natural Science Foundation of Hunan Province of China (2021JJ40528)+2 种基金the China Postdoctoral Science Foundation (2020M682581)the Macao Young Scholars Program (AM2021011)the College Student Innovation and Entrepreneurship Training Program (S202210530051)。
文摘The development of insertion-type anodes is the key to designing“rocking chair”zinc-ion batteries.However,there is rare report on high mass loading anode with high performances.Here,{001}-oriented Bi OCl nanosheets with Sn doping are proposed as a promising insertion-type anode.The designs of cross-linked CNTs conductive network,{001}-oriented nanosheet,and Sn doping significantly enhance ion/electron transport,proved via experimental tests and theoretical calculations(density of states and diffusion barrier).The H^(+)/Zn^(2+)synergistic co-insertion mechanism is proved via ex situ XRD,Raman,XPS,and SEM tests.Accordingly,this optimized electrode delivers a high reversible capacity of 194 m A h g^(-1)at 0.1 A g^(-1)with a voltage of≈0.37 V and an impressive cyclability with 128 m A h g^(-1)over 2500 cycles at 1 A g^(-1).It also shows satisfactory performances at an ultrahigh mass loading of 10 mg cm^(-2).Moreover,the Sn-Bi OCl//MnO_(2)full cell displays a reversible capacity of 85 m A h g^(-1)at 0.2 A g^(-1)during cyclic test.
基金Project supported by the Important Project of College Scientific Research Projects of Xinjiang Uygur Autonomous Region(No.XJEDU2008I05)the Young Teacher Scientific Research Initial Fund of Xinjiang University (No.QN070106)
文摘Sn-doped CdTe polycrystalline films were successfully deposited on ITO glass substrates by close space sublimation. The effects of Sn-doping on the microstructure, surface morphology, and optical properties of polycrys- talline films were studied using X-ray diffraction, scanning electron microscopy, and ultraviolet-visible spectrophotometry, respectively. The results show that the lower molar ratio of Sn and CdTe conduces to a strongly preferential orientation of (111) in films and a larger grain size, which indicates that the crystallinity of films can be improved by appropriate Sn-doping. As the molar ratio of Sn and CdTe increases, the preferential orientation of (111) in films becomes weaker, the grain size becomes smaller, and the crystal boundary becomes indistinct, which indicates that the crystallization growth of films is incomplete. However, as the Sn content increases, optical absorption becomes stronger in the visible region. In summary, a strongly preferential orientation of (111) in films and a larger grain size can be obtained by appropriate Sn-doping (molar ratio of Sn : CdTe = 0.06 : 1), while the film retains a relatively high optical absorption in the visible region. However, Sn-doping has no obvious influence on the energy gap of CdTe films.
基金Project supported by the Science and Technology Program of Guangdong Province,China(Grant No.2015B010112002)the Science and Technology Project of Guangzhou City,China(Grant No.201607010250)
文摘The electronic structures and optical properties of β-Ga_2O_3 and Si-and Sn-doped β-Ga_2O_3 are studied using the GGA + U method based on density functional theory. The calculated bandgap and Ga 3d-state peak of β-Ga_2O_3 are in good agreement with experimental results. Si-and Sn-doped β-Ga_2O_3 tend to form under O-poor conditions, and the formation energy of Si-doped β-Ga_2O_3 is larger than that of Sn-doped β-Ga_2O_3 because of the large bond length variation between Ga–O and Si–O. Si-and Sn-doped β-Ga_2O_3 have wider optical gaps than β-Ga_2O_3, due to the Burstein–Moss effect and the bandgap renormalization effect. Si-doped β-Ga_2O_3 shows better electron conductivity and a higher optical absorption edge than Sn-doped β-Ga_2O_3, so Si is more suitable as a dopant of n-type β-Ga_2O_3, which can be applied in deep-UV photoelectric devices.
基金Project(2001BA901A09) supported by the National Western Development and Technique Foundation during the 10th Five-Year PlaPeriod
文摘Sn-doped In2O3 (ITO) nanopowders were prepared in ethanol solvent by solvothermal process. The effects of the solvothermal temperature, coprecipitation pH value and SnO2 content on the products phase and microwave absorption were investigated by X-ray diffractometry and microwave reflectance. ITO nanopowders with cubic structure can be respectively prepared at 250 and 270 ℃ for 6 h. The prepared product is InOOH or the mixture of InOOH and In3Sn4O12 when the solvothermal temperature is below 250℃. With rising solvothermal temperature and prolonging time, the absorption of the ITO powders gradually decreases. The products are ITO nanopowders by coprecipitating at pH=9 or 11, but ITO powders with Sn3O4 at pH=6. The absorption of powders prepared at pH=6 is better than that at any other pH value. The products are all ITO nanopowders and crystal size reduces with increasing SnO2 content. The microwave absorption of ITO nanopowders with SnO2 content of 8% (mass fraction) is the best among samples with different SnO2 contents.
基金financially supported by the National Natural Science Foundation of China (51972349 and 91963210)the Natural Science Foundation of Guangdong Province (2022A1515011596)the Key Research and Development Program of Guangdong Province (2020B0101690001)。
文摘While the electrochemical nitrogen reduction reaction(NRR) represents a prospective blueprint for environmentally renewable ammonia generation,it has yet to overcome the limitations of weak activity and inferior selectivity.In this regard,surface modification tactic was constructed to markedly enhance the activity and selectivity via introducing Sn atoms into the surface of defective cerium oxide(denoted as Sn-CeO_(2-x)) as the active and robust electrocatalyst for NRR under benign environment.The introduction of Sn atoms in CeO_(2-x)can not only inhibit the HER activity of the catalyst but also modulate the electronic structure of ceria and optimize N-Ce interaction,thus enhancing NRR activity and selectivity.Outperforming all previous CeO_(2)-based NRR catalysts,this catalyst has demonstrated an ammonia yield rate of 41.1 μg mg_(cat)^(-1) h^(-1) and an exceptional Faradic efficiency of 35.3%.This work presents a viable approach for the development of advanced NRR electrocatalysts.
基金Funded by the Natural Science Fundation of Youth Fund in Hebei Province Universities in 2011(No:2011211)
文摘In order to improve the electrochemical performance and thermal stability of Li1.05Co1/3Nil/3Mnl/302 materials, Lil.05CO0.3 Ni0.35Mno.3Mo.0502(M=Ge,Sn) cathode materials were synthesized via co-precipitation method. The structure, electrochemical performance and thermal stability were characterized by X-ray diffraction(XRD), charge/discharge cycling, cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and differential scanning calorimetry(DSC). ESEM showed that Sn-doped and Ge- doped slightly increased the size of grains. XRD and CV showed that Sn-doped and Ge-doped powders were homogeneous and had the better layered structure than the bare one. Sn-doped and Ge-doped improved high rate discharge capacity and cycle-life performance. The reason of the better cycling performance of the doped one was the increasing of lithium-ion diffusion rate and charge transfer rate. Sn-doped and Ge-doped also improved the mateials thermal stability.
基金in part supported by the Start-up funds from Central Organization Department and South China University of Technologyfunds from the National Natural Science Foundation of China (U2001217)+1 种基金the Guangdong Science and Technology Program (2020B121201003, 2019ZT08L075,2019QN01L118, 2021A1515012545)the Fundamental Research Fund for the Central Universities,SCUT(2020ZYGXZR095)。
文摘All-inorganic perovskite solar cells(PSCs) have potential to pass the stability international standard of IEC61215:2016 but cannot deliver high performance and stability due to the poor interface contact. In this paper, Sn-doped TiO_(2)(Ti_(1-x)Sn_(x)O_(2)) ultrathin nanoparticles are prepared for electron transport layer(ETL) by solution process. The ultrathin Ti_(1-x)Sn_(x)O_(2) nanocrystals have greatly improved interface contact due to the facile film formation, good conductivity and high work function. The all-inorganic inverted NiOx/CsPbI_(2)Br/Ti_(1-x)Sn_(x)O_(2)p-i-n device shows a power conversion efficiency(PCE) of 14.0%. We tested the heat stability, light stability and light-heat stability. After stored in 85℃ for 65 days, the inverted PSCs still retains 98% of initial efficiency. Under continuous standard one-sun illumination for 600 h,there is no efficiency decay, and under continuous illumination at 85℃ for 200 h, the device still retains 85% of initial efficiency. The 1.0 cm^(2) device of inverted structure shows a PCE of up to 11.2%. The ultrathin Ti_(1-x)Sn_(x)O_(2)is promising to improve the scalability and stability and thus increase the commercial prospect.
基金financially supported by the National Key Research and Development Program of China(No.2019YFC1904500)the National Natural Science Foundation of China(NSFC,Nos.51502036,21875037)+2 种基金Department of Ecology and Environment of Fujian Province(No.2021R024)the Young Top Talent of Fujian Young Eagle Program of Fujian Province,Educational Commission of Fujian Province(No.2022G02022)Natural Science Foundation of Distinguished Young Scholars for Fujian Province(No.2019J06015)。
文摘At present,there have been some reports on the application of metal phase selenide(1T-MSe_(2))in the field of energy storage.In this manuscript,a stable Sn-doped metal phase tungsten selenide(1T-WSe_(2)-Sn)was elaborately fabricated in situ by a simple calcination technique.N-doping was introduced by employing chitosan as precursor and nanoreactor,the Sn-doping induces 1T phase of WSe_(2)and enlarges the layer space to promote the electron/ion transport and structural stability.The optimized 1T-WSe_(2)-Sn electrode delivers prominent cycling lifespan(285 mAh·g^(-1)at 1.0 A·g^(-1)after 900 cycles)along with decent rate capability when applied as an anode of sodium ion batteries(SIBs).The specific capacity was determined to be of 460 mAh·g^(-1)at 0.1 A·g^(-1)after 100cycles.It also displays superior capacity of 183 mAh·g^(-1)at0.5 A·g^(-1)for 200 cycles when paired with Na_(3)V_(2)(PO_(4))_(3)cathode.Applied as the anode for potassium ion batteries(PIBs),it exhibits a satisfactory specific capacity of 345mAh·g^(-1)at 0.1 A·g^(-1)after 50 cycles.
基金the National Natural Science Foundation of China(Nos.61804136,U1804155,and 62027816).
文摘Ga_(2)O_(3)has been regarded as a promising material for solar-blind detection due to its ultrawide bandgap and low growth cost.Although semiconductor microwires(MWs)possess unique optical and electronic characteristics,the performances of photodetectors developed from Ga_(2)O_(3)MWs are still less than satisfactory.Herein,we demonstrate high-performance solar-blind photodetectors based on Sn-doped Ga_(2)O_(3)MWs,possessing a light/dark current ratio of 107 and a responsivity of 2,409 A/W at 40 V.Moreover,a 1×10 solar-blind photodetector linear array is developed based on the Sn-doped Ga_(2)O_(3)MWs via a patternedelectrodes method.And clear solar-blind images are obtained by using the photodetector array as the imaging unit of a solarblind imaging system.The results provide a convenient way to construct high-performance solar-blind photodetector arrays based on Ga_(2)O_(3)MWs,and thus may push forward their future applications.
文摘Sn-doped ZnO particles were successfully synthesized by chemical co-precipitation method.Their morphology,phase,microstructure and infrared emissivity were characterized.The results show that the Sn-doped ZnO particles are of ellipsoid shape,their crystalline structure changed with thermal process temperature,the optimal thermal process temperature and Sn-doped proportion are 1000℃ and 15%,respectively,the minimum emissivity values are 0.42,0.28,0.46 and 0.48 corresponding to the infrared wavelengths of 0~∞,3~5,8~14 and 14~20 μm,which indicates that the Sn-doped ZnO particles have the application potential as low infrared emissivity material.
基金Project supported by the National Natural Science Foundation of China(No.10974077)the Innovation Project of Shandong Graduate Education,China(No.SDYY13093)
文摘The structural properties, band structures and densities of states of Sn-doped Ga1.375In0.625O3 with a Sn atom substituting for the Ga atom or a Sn atom substituting for the In atom are calculated by using the firstprinciples method. The substitution of the Sn atom for the Ga atom in Ga1.375In0.625O3(Ga1.25In0.625Sn0.125O3/has larger lattice parameters and stronger Sn–O ionic bonds than that of the substitutional doping of the Sn atom for the In atom in Ga1.375In0.625O3(Ga1.375In0.5Sn0.125O3/. Results show that the Sn atom is preferentially substituted for the In atom in Sn-doped Ga1.375In0.625O3. Sn-doped Ga1.375In0.625O3 exhibits n-type metallic conductivity,and the impurity bands are mainly provided by the Sn 5s states. The optical band gap of Ga1.375In0.5Sn0.125O3is larger than that of Ga1.25In0.625Sn0.125O3. Ga1.25In0.625Sn0.125O3 has a smaller electron effective mass and a slightly larger mobility. However, Ga1.375In0.5Sn0.125O3 has a larger relative electron number and a slightly higher conductivity.
基金This work was financially supported by the National Natural Science Foundation of China under Grant No.51772296,51672071,51802085the Foundation for State Key Laboratory of Biochemical Engineering,and“111”Project(D17007).
文摘The specific capacities and power performances of conventional cathode materials are still needed to improve in order to meet the demand for electrical vehicles.Li-rich layered oxide delivers a high specific capacity,but poor rate performances.Chemical doping is an effective way to address this challenge due to the expanded crystal lattice.Unlike a single ion substitution in the literature,here Li-rich layered oxides were doped by Sn and K to achieve the favorite rate performance,where Sn and K were assumed to replace transition metal ion and Li ion,respectively.Results indicate the co-doped samples result in an increasing capacity retention by more than 40%from 107.9(contrast sample)to 151.5 mAh g^(-1)(co-doped sample)at 10 C-rate.Electrochemical impedance spectroscopy(EIS)and calculated diffusion coefficient of Li^(+) also confirmed the favorite rate performances for co-doped sample.Combining results of Rietveld structure refinement,we proposed that the reason for rate performances comes from the enlarged crystal lattices,which provides a smooth diffusion tunnel for Lithium ions during the charge/discharge processes.The as-adopted method provides a possibility to achieve the improved rate performances by co-doping big-size ions at the different crystal sites.