Sn-rich Au-Sn solder bonding has been systematically investigated for low cost and low temperature wafer-level packaging of high-end MEMS devices. The AuSn2 phase with the highest Vickers-hardness among the four stabl...Sn-rich Au-Sn solder bonding has been systematically investigated for low cost and low temperature wafer-level packaging of high-end MEMS devices. The AuSn2 phase with the highest Vickers-hardness among the four stable intermetallic compounds of the Au-Sn system makes a major contribution to the high bonding shear strength. The maximum shear strength of 64 MPa and a leak rate lower than 4.9×10^-7 atm.cc/s have been obtained for Au46Sn54 solder bonded at 310 ℃. This wafer-level low cost bonding technique with high bonding strength can be applied to MEMS devices requiring low temperature packaging.展开更多
Recently, Sn-Zn-Bi alloys have been reported to be the sheath material for miniature detonating cords,due to appropriate mechanical properties, ease of manufacturing, and low cost. Bi addition was found beneficial to ...Recently, Sn-Zn-Bi alloys have been reported to be the sheath material for miniature detonating cords,due to appropriate mechanical properties, ease of manufacturing, and low cost. Bi addition was found beneficial to the mechanical performance of Sn-Zn. However, limited information about the influence of Bi on the corrosion properties of Sn-Zn alloys has been provided. In this work, electrochemical corrosion behaviours of Sn-3Zn-xBi(x=0, 1, 3, 5, 7 wt%) alloys were investigated using potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) techniques, to explore the effects of Bi on the corrosion performance of Sn-Zn alloys. The corrosion mechanism of Sn-Zn-Bi alloys was analysed through microstructure examination on the surface of alloys after corrosion measurements. Results indicated that the addition of 1 wt% Bi increased the corrosion susceptibility of the Sn-3Zn alloy, mainly attributed to the coarsened and more uniformly distributed corrosion-vulnerable Zn-rich precipitates, while further increasing the Bi contents decreased the corrosion susceptibility of Sn-3Zn-xBi alloys due to the higher fraction of nobler Bi particles serving as anodic barriers. The Sn-3Zn-7Bi possessed the best corrosion resistance among all Sn-Zn-Bi alloys investigated. The role of Bi on corrosion was considerably discussed.展开更多
基金supported by the State Key Development Program for Basic Research of China(Nos.2009CB320305,2011CB933102)the National Natural Science Foundation of China(Nos.61234007,61201104,61274001)
文摘Sn-rich Au-Sn solder bonding has been systematically investigated for low cost and low temperature wafer-level packaging of high-end MEMS devices. The AuSn2 phase with the highest Vickers-hardness among the four stable intermetallic compounds of the Au-Sn system makes a major contribution to the high bonding shear strength. The maximum shear strength of 64 MPa and a leak rate lower than 4.9×10^-7 atm.cc/s have been obtained for Au46Sn54 solder bonded at 310 ℃. This wafer-level low cost bonding technique with high bonding strength can be applied to MEMS devices requiring low temperature packaging.
基金Financial support from the National Aerospace Technology Exploitation Programme (NATEP)Chemring Energetics UK [grant number WEAF058]
文摘Recently, Sn-Zn-Bi alloys have been reported to be the sheath material for miniature detonating cords,due to appropriate mechanical properties, ease of manufacturing, and low cost. Bi addition was found beneficial to the mechanical performance of Sn-Zn. However, limited information about the influence of Bi on the corrosion properties of Sn-Zn alloys has been provided. In this work, electrochemical corrosion behaviours of Sn-3Zn-xBi(x=0, 1, 3, 5, 7 wt%) alloys were investigated using potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) techniques, to explore the effects of Bi on the corrosion performance of Sn-Zn alloys. The corrosion mechanism of Sn-Zn-Bi alloys was analysed through microstructure examination on the surface of alloys after corrosion measurements. Results indicated that the addition of 1 wt% Bi increased the corrosion susceptibility of the Sn-3Zn alloy, mainly attributed to the coarsened and more uniformly distributed corrosion-vulnerable Zn-rich precipitates, while further increasing the Bi contents decreased the corrosion susceptibility of Sn-3Zn-xBi alloys due to the higher fraction of nobler Bi particles serving as anodic barriers. The Sn-3Zn-7Bi possessed the best corrosion resistance among all Sn-Zn-Bi alloys investigated. The role of Bi on corrosion was considerably discussed.