Extensive testing was carried out to study the effects of rare earth Ce doping on the properties of SnAgCu solder alloys.The addition of 0.03%(mass fraction) rare earth Ce into SnAgCu solder may improve its mechanical...Extensive testing was carried out to study the effects of rare earth Ce doping on the properties of SnAgCu solder alloys.The addition of 0.03%(mass fraction) rare earth Ce into SnAgCu solder may improve its mechanical properties,but slightly lower its melting temperature.The tensile creep behavior of bulk SnAgCuCe solders was reported and compared with SnAgCu solders.It is found that SnAgCuCe solders show higher creep resistance than SnAgCu alloys.Moreover,Dorn model and Garofalo model are successfully used to describe the creep behavior of SnAgCu and SnAgCuCe alloys.The parameters of the two creep constitutive equations for SnAgCu and SnAgCuCe solders are determined from separated constitutive relations and experimental results.Nonlinear least-squares fitting is selected to determine the model constants.The experimental data of the stress-creep strain rate curves are in good agreement with the theoretical ones.展开更多
Intermetallic compounds(IMC) formed at Sn-Ag-Cu solder droplet/pad interface during wetting reaction were investigated. Comparative studies of the IMC evolution during reflow and aging were also conducted. The results...Intermetallic compounds(IMC) formed at Sn-Ag-Cu solder droplet/pad interface during wetting reaction were investigated. Comparative studies of the IMC evolution during reflow and aging were also conducted. The results show that the wetting reaction between molten solder droplet and pad leads to the formation of Au-Sn compound at interface, but Au element is not fully consumed during wetting reaction. After reflow, all Au layer disappears from the interface, Au element is dissolved into solder and Au-Sn intermetallic compounds are precipitated in the bulk. Reaction between Ni layer and Sn-Ag-Cu solder leads to the formation of (CuxNi1-x)6Sn5 layer at interface during reflow. According to the thermodynamic-kinetic of interfacial reaction, the wetting reaction at solder droplet/pad interface influences the phase selectivity of IMC evolution during reflow and aging process.展开更多
The effect of cryogenic temperatures on the mechanical properties and fracture mechanism of SnAgCu−SnPb mixed solder joints was investigated.The results showed that the tensile strength of mixed solder joints first in...The effect of cryogenic temperatures on the mechanical properties and fracture mechanism of SnAgCu−SnPb mixed solder joints was investigated.The results showed that the tensile strength of mixed solder joints first increased with the increase of Pb content and reached its maximum at 22.46 wt.%Pb;subsequently,it decreased as Pb content increased.However,cryogenic temperatures improved the tensile strength of the solder joints.Both Pb content and cryogenic temperature caused the fracture mode of the mixed solder joints to change;however,temperature remained the main influencing factor.As the temperature fell from 298 to 123 K,the failure pattern in the solder joints transformed from ductile fracture to quasi-ductile fracture to quasi-brittle fracture and finally,to brittle fracture.展开更多
基金Project(BCXJ09-07) supported by Doctoral Dissertation Innovation and Excellence Producing Foundation of Nanjing University of Aeronautics and Astronautics,ChinaProject(CX07B_087z) supported by the Jiangsu General Colleges and Universities Postgraduate Scientific Research Innovative Plan,China
文摘Extensive testing was carried out to study the effects of rare earth Ce doping on the properties of SnAgCu solder alloys.The addition of 0.03%(mass fraction) rare earth Ce into SnAgCu solder may improve its mechanical properties,but slightly lower its melting temperature.The tensile creep behavior of bulk SnAgCuCe solders was reported and compared with SnAgCu solders.It is found that SnAgCuCe solders show higher creep resistance than SnAgCu alloys.Moreover,Dorn model and Garofalo model are successfully used to describe the creep behavior of SnAgCu and SnAgCuCe alloys.The parameters of the two creep constitutive equations for SnAgCu and SnAgCuCe solders are determined from separated constitutive relations and experimental results.Nonlinear least-squares fitting is selected to determine the model constants.The experimental data of the stress-creep strain rate curves are in good agreement with the theoretical ones.
文摘Intermetallic compounds(IMC) formed at Sn-Ag-Cu solder droplet/pad interface during wetting reaction were investigated. Comparative studies of the IMC evolution during reflow and aging were also conducted. The results show that the wetting reaction between molten solder droplet and pad leads to the formation of Au-Sn compound at interface, but Au element is not fully consumed during wetting reaction. After reflow, all Au layer disappears from the interface, Au element is dissolved into solder and Au-Sn intermetallic compounds are precipitated in the bulk. Reaction between Ni layer and Sn-Ag-Cu solder leads to the formation of (CuxNi1-x)6Sn5 layer at interface during reflow. According to the thermodynamic-kinetic of interfacial reaction, the wetting reaction at solder droplet/pad interface influences the phase selectivity of IMC evolution during reflow and aging process.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(No.51965044)the Aeronautical Science Foundation of China(No.20185456005).
文摘The effect of cryogenic temperatures on the mechanical properties and fracture mechanism of SnAgCu−SnPb mixed solder joints was investigated.The results showed that the tensile strength of mixed solder joints first increased with the increase of Pb content and reached its maximum at 22.46 wt.%Pb;subsequently,it decreased as Pb content increased.However,cryogenic temperatures improved the tensile strength of the solder joints.Both Pb content and cryogenic temperature caused the fracture mode of the mixed solder joints to change;however,temperature remained the main influencing factor.As the temperature fell from 298 to 123 K,the failure pattern in the solder joints transformed from ductile fracture to quasi-ductile fracture to quasi-brittle fracture and finally,to brittle fracture.