To improve the denitrification performance of carbon-based materials for sintering flue gas,we prepared a composite catalyst comprising coconut shell activated carbon(AC)modified by thermal oxidation air.The microstru...To improve the denitrification performance of carbon-based materials for sintering flue gas,we prepared a composite catalyst comprising coconut shell activated carbon(AC)modified by thermal oxidation air.The microstructure,the specific surface area,the pore volume,the crystal structure,and functional groups presented in the prepared Cu2O/AC catalysts were thoroughly characterized.By using scanning electron microscopy(SEM),nitrogen adsorption/desorption isotherms,Fourier-transform infrared(FTIR)spectroscopy and X-ray diffractometry(XRD),the effects of Cu2O loading and calcination temperature on Cu2O/AC catalysts were investigated at low temperature(150℃).The research shows that Cu on the Cu2O/AC catalyst is in the form of Cu2O with good crystalline performance and is spherical and uniformly dispersed on the AC surface.The loading of Cu2O increases the active sites and the specific surface area of the reaction gas contact,which is conducive to the rapid progress of the carbon monoxide selective catalytic reduction(CO-SCR)reaction.When the loading of Cu2O was 8%and the calcination temperature was 500℃,the removal rate of NOx facilitated by the Cu2O/AC catalyst reached 97.9%.These findings provide a theoretical basis for understanding the denitrification of sintering flue gas.展开更多
The effects of SO2, V2O5 loading and reaction temperature on the activity of activated carbon supported vanadium oxide catalyst have been studied for the reduction of NO with NH3 at low temperatures (150-250℃). It is...The effects of SO2, V2O5 loading and reaction temperature on the activity of activated carbon supported vanadium oxide catalyst have been studied for the reduction of NO with NH3 at low temperatures (150-250℃). It is found that SO2 significantly promotes the catalyst activity. Both V2O5 loading and reaction temperature are vital to the promoting effect of SO2. The catalysts with V2O5 loadings of 1 -5 weight percent have a positive effect on the promotion of SO2, while the catalysts with V2O5 loadings of above 7 weight percent have not such an effect or show a negative effect. At lower temperatures (<180℃) SO2 poisons the catalyst but at higher temperatures promotes it. The reason of the SO2 promotion was also discussed; it may results from the formation of SO42- on the catalyst surface, which increases the surface acidity and hence the catalytic activity.展开更多
基金Open Fund of Key Laboratory of Ministry of Education for Metallurgical Emission Reduction and Comprehensive Utilization of Resources,China(No.JKF19-08)General Project of Science and Technology Plan of Yunnan Science and Technology Department,China(No.2019FB077)+1 种基金Industrialization Cultivation Project of Scientific Research Fund of Yunnan Provincial Department of Education,China(No.2016CYH07)Top Young Talents of Yunnan Ten Thousand Talents Plan,China(No.YNWR-QNBJ-2019-263)。
文摘To improve the denitrification performance of carbon-based materials for sintering flue gas,we prepared a composite catalyst comprising coconut shell activated carbon(AC)modified by thermal oxidation air.The microstructure,the specific surface area,the pore volume,the crystal structure,and functional groups presented in the prepared Cu2O/AC catalysts were thoroughly characterized.By using scanning electron microscopy(SEM),nitrogen adsorption/desorption isotherms,Fourier-transform infrared(FTIR)spectroscopy and X-ray diffractometry(XRD),the effects of Cu2O loading and calcination temperature on Cu2O/AC catalysts were investigated at low temperature(150℃).The research shows that Cu on the Cu2O/AC catalyst is in the form of Cu2O with good crystalline performance and is spherical and uniformly dispersed on the AC surface.The loading of Cu2O increases the active sites and the specific surface area of the reaction gas contact,which is conducive to the rapid progress of the carbon monoxide selective catalytic reduction(CO-SCR)reaction.When the loading of Cu2O was 8%and the calcination temperature was 500℃,the removal rate of NOx facilitated by the Cu2O/AC catalyst reached 97.9%.These findings provide a theoretical basis for understanding the denitrification of sintering flue gas.
文摘The effects of SO2, V2O5 loading and reaction temperature on the activity of activated carbon supported vanadium oxide catalyst have been studied for the reduction of NO with NH3 at low temperatures (150-250℃). It is found that SO2 significantly promotes the catalyst activity. Both V2O5 loading and reaction temperature are vital to the promoting effect of SO2. The catalysts with V2O5 loadings of 1 -5 weight percent have a positive effect on the promotion of SO2, while the catalysts with V2O5 loadings of above 7 weight percent have not such an effect or show a negative effect. At lower temperatures (<180℃) SO2 poisons the catalyst but at higher temperatures promotes it. The reason of the SO2 promotion was also discussed; it may results from the formation of SO42- on the catalyst surface, which increases the surface acidity and hence the catalytic activity.