过氧化氢(H_(2)O_(2))是一种重要的化工产品,广泛应用于污水处理、消毒杀菌和印染漂白等领域.在蒽醌法生产H_(2)O_(2)的过程中,易产生有毒气体并存在爆炸危险.因此,仅利用水、氧气和太阳光即可在合适的光催化剂上生成H_(2)O_(2)的光催...过氧化氢(H_(2)O_(2))是一种重要的化工产品,广泛应用于污水处理、消毒杀菌和印染漂白等领域.在蒽醌法生产H_(2)O_(2)的过程中,易产生有毒气体并存在爆炸危险.因此,仅利用水、氧气和太阳光即可在合适的光催化剂上生成H_(2)O_(2)的光催化技术备受关注.本课题组报道了通过酸碱自组装法制备的四(4-羧基苯基)卟啉(SA-TCPP)光催化剂,用于生产H_(2)O_(2).该催化剂克服了大部分H_(2)O_(2)光催化剂存在的需要牺牲剂、活性低和光利用率不足等问题,但其性能仍受限于较高的复合率.晶面调控已被证实是改善许多无机催化剂电荷复合的有效策略,然而,对于有机光催化剂,关于暴露晶面与其活性关系的研究仍然较少.本文采用溶解-重结晶法在水和三种有机溶剂的混合物中成功合成了三种具有不同暴露晶面的卟啉光催化剂.即利用卟啉在有机溶剂和水中的溶解度差异,将卟啉先溶解在四氢呋喃(THF)、甲醇(MeOH)或乙二醇(EG)溶液中,随后在水溶液中重新结晶.X射线衍射、高分辨率透射电子显微镜及晶面模拟模型图的结果表明,三种催化剂具有相同的晶体结构,但分别暴露了(400)、(022)和(020)晶面.通过紫外分光光度计测量这些催化剂在氙灯(λ≥420 nm)照射下的光催化活性,结果表明,具有(400)暴露面的卟啉光催化剂的H_(2)O_(2)生产速率最高,可达29.33 mmol L h^(-1)g^(-1),分别是具有(022)暴露面和(020)暴露面的卟啉光催化剂的2.7倍和4.1倍,约是已报道的SA-TCPP光催化剂的1.3倍.通过紫外漫反射、莫特肖特基曲线分析以及LED灯照射下的光催化活性测试,排除了光吸收能力对这三种卟啉光催化剂活性的影响.开尔文探针力显微镜、光生电流密度谱图、晶面模拟模型图和密度泛函理论计算结果表明,活性的差异主要归因于(400)表面暴露的高羧基含量所引发的强内建电场,并且在该暴露面上的内建电场方向有利于空穴从吡咯氮向羧基碳的跃迁,因此阻碍了电荷的快速重组,促进了富有挑战性的水氧化过程,而(020)面由于暴露了最多的吡咯氮和最少的羧基碳,其产生的内建电场强度最弱,且内建电场方向阻碍了空穴向羧基碳的跃迁,因此H_(2)O_(2)生产速率最低.综上所述,本工作通过晶面调控产生强内建电场以加速空穴的迁移,降低了电子空穴复合速率,实现了高H_(2)O_(2)生产速率,为更高效的有机光催化剂的设计和开发提供了新思路.展开更多
以水和氧气为原料,光催化产过氧化氢(H_(2)O_(2))具有绿色、清洁的特点而受到广泛关注。针对氮化碳(g-C_(3)N_(4))本征光催化活性低的问题,本文采用两步热聚合法制备了具有大比表面积和结晶性增强的超薄g-C_(3)N_(4)纳米片光催化剂。煅...以水和氧气为原料,光催化产过氧化氢(H_(2)O_(2))具有绿色、清洁的特点而受到广泛关注。针对氮化碳(g-C_(3)N_(4))本征光催化活性低的问题,本文采用两步热聚合法制备了具有大比表面积和结晶性增强的超薄g-C_(3)N_(4)纳米片光催化剂。煅烧条件对g-C_(3)N_(4)的结构属性和催化性能有显著影响。两步焙烧和1℃·min^(-1)最佳升温速率制备的样品(CN-T-1)表现出显著提高的光催化产H_(2)O_(2)效率(3177.0μmol·g^(-1)·h^(-1)),为一步焙烧和1℃·min^(-1)升温速率制备的样品(CN-O-1)(858.6μmol·g^(-1)·h^(-1))的3.7倍,高于文献报导的纯g-C_(3)N_(4)产H_(2)O_(2)效率。CN-T-1在5次循环使用中H_(2)O_(2)产率先略有下降,后基本保持不变,表现出良好的稳定性。相较于CN-O-1,CN-T-1增强的催化性能归因于更大的比表面积、增强的结晶性、更高氧吸附能力和光生载流子分离效率、更长的载流子寿命,以及超薄片层使其具有更大的带隙(3.07 e V,比CN-O-1大+0.26 e V)和更正的价带位置。·O_(2)^(-)自由基被证实为主要的活性物种。CN-T-1光催化产H_(2)O_(2)被证实为两步单电子ORR路径(O_(2)+e^(-)→·O_(2)^(-)→H_(2)O_(2))。展开更多
文摘以纳米TiO_(2)(P25)为原料,通过固相化学还原法制备了富含氧空位(OV)的纳米TiO_(2)光催化剂(TiO_(2)-OV)。采用XRD、SEM、XPS、EPR和UV-Vis DRS光谱对TiO_(2)-OV进行了表征和测试。通过光催化实验和光电化学测试,考察了不同Na BH_(4)用量(P25用量为2.0 g时)制备的TiO_(2)-OV光催化生产H_(2)O_(2)的能力,并推测了其光催化反应机理。结果表明,TiO_(2)-OV是锐钛矿型和金红石型晶体组成的混合物。当Na BH_(4)用量为10 mg时,制备的TiO_(2)-OV-10直接带隙能(E_(g))为2.77 e V,导带(CB)电位为–0.84 e V,展示出最佳的光催化生产H_(2)O_(2)性能。在模拟太阳光照射下,H_(2)O_(2)的生产效率达到1752.80μmol/(g·h),其高效的光催化性能归因于TiO_(2)表面产生了OV,适量的OV可作为电子陷阱,从而提高了光生电子-空穴的分离效率。催化剂经4次回收循环使用后,催化性能略有下降。TiO_(2)-OV光催化生产H_(2)O_(2)的活性物种为超氧自由基、羟基自由基和空穴,CH_(3)OH在促进光载体分离及生成H_(2)O_(2)方面发挥了重要作用。
文摘过氧化氢(H_(2)O_(2))是一种重要的化工产品,广泛应用于污水处理、消毒杀菌和印染漂白等领域.在蒽醌法生产H_(2)O_(2)的过程中,易产生有毒气体并存在爆炸危险.因此,仅利用水、氧气和太阳光即可在合适的光催化剂上生成H_(2)O_(2)的光催化技术备受关注.本课题组报道了通过酸碱自组装法制备的四(4-羧基苯基)卟啉(SA-TCPP)光催化剂,用于生产H_(2)O_(2).该催化剂克服了大部分H_(2)O_(2)光催化剂存在的需要牺牲剂、活性低和光利用率不足等问题,但其性能仍受限于较高的复合率.晶面调控已被证实是改善许多无机催化剂电荷复合的有效策略,然而,对于有机光催化剂,关于暴露晶面与其活性关系的研究仍然较少.本文采用溶解-重结晶法在水和三种有机溶剂的混合物中成功合成了三种具有不同暴露晶面的卟啉光催化剂.即利用卟啉在有机溶剂和水中的溶解度差异,将卟啉先溶解在四氢呋喃(THF)、甲醇(MeOH)或乙二醇(EG)溶液中,随后在水溶液中重新结晶.X射线衍射、高分辨率透射电子显微镜及晶面模拟模型图的结果表明,三种催化剂具有相同的晶体结构,但分别暴露了(400)、(022)和(020)晶面.通过紫外分光光度计测量这些催化剂在氙灯(λ≥420 nm)照射下的光催化活性,结果表明,具有(400)暴露面的卟啉光催化剂的H_(2)O_(2)生产速率最高,可达29.33 mmol L h^(-1)g^(-1),分别是具有(022)暴露面和(020)暴露面的卟啉光催化剂的2.7倍和4.1倍,约是已报道的SA-TCPP光催化剂的1.3倍.通过紫外漫反射、莫特肖特基曲线分析以及LED灯照射下的光催化活性测试,排除了光吸收能力对这三种卟啉光催化剂活性的影响.开尔文探针力显微镜、光生电流密度谱图、晶面模拟模型图和密度泛函理论计算结果表明,活性的差异主要归因于(400)表面暴露的高羧基含量所引发的强内建电场,并且在该暴露面上的内建电场方向有利于空穴从吡咯氮向羧基碳的跃迁,因此阻碍了电荷的快速重组,促进了富有挑战性的水氧化过程,而(020)面由于暴露了最多的吡咯氮和最少的羧基碳,其产生的内建电场强度最弱,且内建电场方向阻碍了空穴向羧基碳的跃迁,因此H_(2)O_(2)生产速率最低.综上所述,本工作通过晶面调控产生强内建电场以加速空穴的迁移,降低了电子空穴复合速率,实现了高H_(2)O_(2)生产速率,为更高效的有机光催化剂的设计和开发提供了新思路.
基金supported by the Natural Science Foundation of China(51572074)Open Fund of Key Laboratory of Drug Analysis and Anti-drug Technology of the Ministry of Public Security(YNPL-B2021002)。
文摘以水和氧气为原料,光催化产过氧化氢(H_(2)O_(2))具有绿色、清洁的特点而受到广泛关注。针对氮化碳(g-C_(3)N_(4))本征光催化活性低的问题,本文采用两步热聚合法制备了具有大比表面积和结晶性增强的超薄g-C_(3)N_(4)纳米片光催化剂。煅烧条件对g-C_(3)N_(4)的结构属性和催化性能有显著影响。两步焙烧和1℃·min^(-1)最佳升温速率制备的样品(CN-T-1)表现出显著提高的光催化产H_(2)O_(2)效率(3177.0μmol·g^(-1)·h^(-1)),为一步焙烧和1℃·min^(-1)升温速率制备的样品(CN-O-1)(858.6μmol·g^(-1)·h^(-1))的3.7倍,高于文献报导的纯g-C_(3)N_(4)产H_(2)O_(2)效率。CN-T-1在5次循环使用中H_(2)O_(2)产率先略有下降,后基本保持不变,表现出良好的稳定性。相较于CN-O-1,CN-T-1增强的催化性能归因于更大的比表面积、增强的结晶性、更高氧吸附能力和光生载流子分离效率、更长的载流子寿命,以及超薄片层使其具有更大的带隙(3.07 e V,比CN-O-1大+0.26 e V)和更正的价带位置。·O_(2)^(-)自由基被证实为主要的活性物种。CN-T-1光催化产H_(2)O_(2)被证实为两步单电子ORR路径(O_(2)+e^(-)→·O_(2)^(-)→H_(2)O_(2))。