期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Hierarchical SnO_2 nanoflowers assembled by atomic thickness nanosheets as anode material for lithium ion battery 被引量:2
1
作者 宋凌霄 杨胜杰 +3 位作者 魏伟 瞿鹏 徐茂田 刘英 《Science Bulletin》 SCIE EI CAS CSCD 2015年第9期892-895,M0004,共5页
Hierarchical SnO2 nanoflowers assembled by atomic thickness nanosheets were prepared by facile one-pot solvothermal method with acetone/water mixture as solvent. The crystal structure, morphology and the microstructur... Hierarchical SnO2 nanoflowers assembled by atomic thickness nanosheets were prepared by facile one-pot solvothermal method with acetone/water mixture as solvent. The crystal structure, morphology and the microstructure of the as-prepared products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and atomic force microscope (AFM). Results revealed that the nanoflowers (2-4 μm) were assembled by the ultrathin SnO2 nanosheets (3.1 nm esti- mated by AFM). When tested as anode material for lithium ion batteries, the SnO2 nanoflowers showed improved cy- cling stability comparing with the commercial SnO2 parti- cles. The reversible charge capacity of SnO2 nanoflowers maintained 350.7 mAh/g after 30 cycles, while that of the commercial SnO2 was only 112.2 mAh/g. The high re- versible capacity and good cycling stability could be ascri- bed to the hierarchical nanostructure, atomic thickness nanosheets and large surface area of the SnO2 nanoflowers. 展开更多
关键词 sno2 nanoflowers Atomic thickness Lithium ion battery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部