The α Fe 2 O 3 sol was prepared by a sol gel method from FeCl 3 ·6H 2 O. Thin nano particulate films of the α Fe 2 O 3 were deposited on glass substrate by dip coating sol gel technique. The structure and morph...The α Fe 2 O 3 sol was prepared by a sol gel method from FeCl 3 ·6H 2 O. Thin nano particulate films of the α Fe 2 O 3 were deposited on glass substrate by dip coating sol gel technique. The structure and morphology of the thin films were characterized by XRD, UV Vis and AFM analysis methods. The XRD results revealed that the nano crystal with (104) preferential orientation has been formed on glass substrate. The UV Vis spectra showed that the nano particulate films obtained from Fe 2 O 3 aqueous colloidal sols are well transferred to glass substrate at dip coating rate of 80 mm/min. The α Fe 2 O 3 particles are ellipsoidal shaped, with particle size of about 5~7 nm. The multilayer films exhibited high sensitivity to ethanol vapor at room temperature.展开更多
为改善SnO_2-Fe_2O_3的电化学性能,通过一步水热法合成SnO_2-Fe_2O_3/rGO纳米复合材料,采用XRD、SEM、电化学工作站和蓝电电池测试系统,研究rGO加入量对SnO_2-Fe_2O_3/rGO复合材料的结构和电化学性能的影响.结果表明:rGO的掺入能很好地...为改善SnO_2-Fe_2O_3的电化学性能,通过一步水热法合成SnO_2-Fe_2O_3/rGO纳米复合材料,采用XRD、SEM、电化学工作站和蓝电电池测试系统,研究rGO加入量对SnO_2-Fe_2O_3/rGO复合材料的结构和电化学性能的影响.结果表明:rGO的掺入能很好地提高SnO_2-Fe_2O_3循环稳定性和倍率性能;对于SnO_2-Fe_2O_3/rGO50复合材料,在160 m A/g的电流密度下,100次循环后,放电比容量仍然保持596.9 m Ah/g,库仑效率为98%;即使在1 A/g的电流密度下,依然有366.6 m Ah/g的平均放电比容量.展开更多
文摘The α Fe 2 O 3 sol was prepared by a sol gel method from FeCl 3 ·6H 2 O. Thin nano particulate films of the α Fe 2 O 3 were deposited on glass substrate by dip coating sol gel technique. The structure and morphology of the thin films were characterized by XRD, UV Vis and AFM analysis methods. The XRD results revealed that the nano crystal with (104) preferential orientation has been formed on glass substrate. The UV Vis spectra showed that the nano particulate films obtained from Fe 2 O 3 aqueous colloidal sols are well transferred to glass substrate at dip coating rate of 80 mm/min. The α Fe 2 O 3 particles are ellipsoidal shaped, with particle size of about 5~7 nm. The multilayer films exhibited high sensitivity to ethanol vapor at room temperature.
基金The project was supported by the National Natural Science Foundation of China(21163016,21174114)Gansu Provincial Natural Science Foundation,China(1010RJZA024)Scientific Research Fund of Northwest Normal University,China(NWNU-KJCXGC-03-63)~~
文摘为改善SnO_2-Fe_2O_3的电化学性能,通过一步水热法合成SnO_2-Fe_2O_3/rGO纳米复合材料,采用XRD、SEM、电化学工作站和蓝电电池测试系统,研究rGO加入量对SnO_2-Fe_2O_3/rGO复合材料的结构和电化学性能的影响.结果表明:rGO的掺入能很好地提高SnO_2-Fe_2O_3循环稳定性和倍率性能;对于SnO_2-Fe_2O_3/rGO50复合材料,在160 m A/g的电流密度下,100次循环后,放电比容量仍然保持596.9 m Ah/g,库仑效率为98%;即使在1 A/g的电流密度下,依然有366.6 m Ah/g的平均放电比容量.