A flower-like SnO_(2)–SnO/porous Ga N(FSS/PGaN) heterojunction was fabricated for the first time via a facile spraying process, and the whole process also involved hydrothermal preparation of FSS and electrochemical ...A flower-like SnO_(2)–SnO/porous Ga N(FSS/PGaN) heterojunction was fabricated for the first time via a facile spraying process, and the whole process also involved hydrothermal preparation of FSS and electrochemical wet etching of GaN,and SnO_(2)–SnO composites with p–n junctions were loaded onto PGaN surface directly applied to H_(2)S sensor. Meanwhile,the excellent transport capability of heterojunction between FSS and PGaN facilitates electron transfer, that is, a response time as short as 65 s and a release time up to 27 s can be achieved merely at 150℃ under 50 ppm H_(2)S concentration, which has laid a reasonable theoretical and experimental foundation for the subsequent PGaN-based heterojunction gas sensor.The lowering working temperature and high sensitivity(23.5 at 200 ppm H2S) are attributed to the structure of PGaN itself and the heterojunction between SnO_(2)–SnO and PGaN. In addition, the as-obtained sensor showed ultra-high test stability.The simple design strategy of FSS/PGaN-based H_(2)S sensor highlights its potential in various applications.展开更多
All-solid-state electrolytes are exceedingly attractive because of the outstanding inherent safety and energy density compared to liquid electrolytes.Whereas,it is still formidable to simultaneously design solid elect...All-solid-state electrolytes are exceedingly attractive because of the outstanding inherent safety and energy density compared to liquid electrolytes.Whereas,it is still formidable to simultaneously design solid electrolytes with favorable electrode/electrolyte interface compatibility and high ionic conductivity in a simple and scalable manner.Hence,the oxygen-vacancy-rich Gd-doped SnO_(2) nanotubes(GDS NTs)are innovatively prepared and applied to the electrolyte of all-solid-state lithium metal batteries for the first time.The addition of GDS NTs can validly construct long-range co ntinuous ion transport networks in the poly(ethylene oxide)(PEO)-based system and greatly improve the mechanical properties of the electrolyte.Compared to the PEO-based electrolyte,the composite electrolyte displays a higher lithium ion conductivity of 2.41×10^(-4) S cm^(-1) at 30℃,a higher lithium ion transference number up to 0.62 and a wider electrochemical window of 5 V at 50℃.In addition,the composite electrolyte manifests outstanding compatibility with high-voltage LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)cathode,LiFePO4 cathode and lithium metal anode.The assembled Li/Li symmetric battery exhibits stable Li plating/stripping cycling performance,which can cycle steadily for 1500 h at a capacity of 0.3 mA h cm^(-2).And Li/LiFePO4 battery still maintains a high capacity of 131.54 mA h g^(-1) at 0.5C after 800 cycles,which has a superior capacity retention rate of 93.2%.The obtained novel composite electrolyte has promising application prospects in the field of all-solid-state lithium metal cells.展开更多
Nanocrystalline SnO<sub>2</sub> and CuO doped with SnO<sub>2</sub> were prepared by the co-precipitation method and characterized for different physiochemical properties and microbiological act...Nanocrystalline SnO<sub>2</sub> and CuO doped with SnO<sub>2</sub> were prepared by the co-precipitation method and characterized for different physiochemical properties and microbiological activity. The composition and morphological formation were characterized by XRD, HRTEM, Raman, FTIR, and UV-vis spectroscopy. The Powder X-ray analysis reveals that Sn4+ ions have substituted the Cu<sup>2+</sup> ions without changing the monoclinic structure of SnO<sub>2</sub> but the average particle size of the SnO<sub>2</sub> and CuO doped SnO<sub>2</sub> samples from 11 and 5 nm respectively. However, it exhibits an inhibiting strong bacterial growth against tested bacterial strains.展开更多
以 Sn Cl4· Ti( OBu) 4、氨水、乙醇为原料 ,采用活性层包覆法 ,制备出 Ti O2 / Sn O2 复合光催化剂 ,并用IR、XRD、TEM和 BET等手段对样品进行了表征 .研究其对有机磷农药敌敌畏的光催化降解效果 ,与单一半导体催化剂 Sn O2 、Ti ...以 Sn Cl4· Ti( OBu) 4、氨水、乙醇为原料 ,采用活性层包覆法 ,制备出 Ti O2 / Sn O2 复合光催化剂 ,并用IR、XRD、TEM和 BET等手段对样品进行了表征 .研究其对有机磷农药敌敌畏的光催化降解效果 ,与单一半导体催化剂 Sn O2 、Ti O2 做了简单对比 .结果表明 :所制 Ti O2 / Sn O2 样品为包覆型结构 ,由锐钛矿型 Ti O2 金红石型 Sn O2 组成 ,与 Sn O2 及 Ti O2 晶体粉末相比所制 Ti O2 / Sn O2 包覆粒子光催化活性得到明显提高 .展开更多
利用直流电弧等离子体蒸发 -凝聚法制备 Sn O2 纳米粒子 ,研究了 Sn O2 粒子在等离子体焰流中的形成和生长机理 ,探讨了等离子体发生器功率、气体配比和冷却介质对 Sn O2 纳米粒子粒度和纯度的影响 ,制备出了纯度大于98.8%、粒度可控的 ...利用直流电弧等离子体蒸发 -凝聚法制备 Sn O2 纳米粒子 ,研究了 Sn O2 粒子在等离子体焰流中的形成和生长机理 ,探讨了等离子体发生器功率、气体配比和冷却介质对 Sn O2 纳米粒子粒度和纯度的影响 ,制备出了纯度大于98.8%、粒度可控的 Sn O2 纳米粉末 ,为制造高性能 Sn O2 气敏传感器打下了良好的基础。展开更多
基金supported by the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (Grant Nos. XK1060921115 and XK1060921002)Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 62204125)+1 种基金the National Key R&D Program of China (Grant No. 2022YFB3605404)the Natural Science Foundation of Guangdong Province, China (Grant No. 2019A1515010790)。
文摘A flower-like SnO_(2)–SnO/porous Ga N(FSS/PGaN) heterojunction was fabricated for the first time via a facile spraying process, and the whole process also involved hydrothermal preparation of FSS and electrochemical wet etching of GaN,and SnO_(2)–SnO composites with p–n junctions were loaded onto PGaN surface directly applied to H_(2)S sensor. Meanwhile,the excellent transport capability of heterojunction between FSS and PGaN facilitates electron transfer, that is, a response time as short as 65 s and a release time up to 27 s can be achieved merely at 150℃ under 50 ppm H_(2)S concentration, which has laid a reasonable theoretical and experimental foundation for the subsequent PGaN-based heterojunction gas sensor.The lowering working temperature and high sensitivity(23.5 at 200 ppm H2S) are attributed to the structure of PGaN itself and the heterojunction between SnO_(2)–SnO and PGaN. In addition, the as-obtained sensor showed ultra-high test stability.The simple design strategy of FSS/PGaN-based H_(2)S sensor highlights its potential in various applications.
基金supported by the National Natural Science Foundation of China(52203066,51973157,61904123,51873152)the Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金the Science and Technology Plans of Tianjin(19PTSYJC00010)the Tianjin Research Innovation Project for Postgraduate Students(2021YJSB234)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(2018KJ196)State Key Laboratory of Membrane and Membrane Separation,Tiangong University。
文摘All-solid-state electrolytes are exceedingly attractive because of the outstanding inherent safety and energy density compared to liquid electrolytes.Whereas,it is still formidable to simultaneously design solid electrolytes with favorable electrode/electrolyte interface compatibility and high ionic conductivity in a simple and scalable manner.Hence,the oxygen-vacancy-rich Gd-doped SnO_(2) nanotubes(GDS NTs)are innovatively prepared and applied to the electrolyte of all-solid-state lithium metal batteries for the first time.The addition of GDS NTs can validly construct long-range co ntinuous ion transport networks in the poly(ethylene oxide)(PEO)-based system and greatly improve the mechanical properties of the electrolyte.Compared to the PEO-based electrolyte,the composite electrolyte displays a higher lithium ion conductivity of 2.41×10^(-4) S cm^(-1) at 30℃,a higher lithium ion transference number up to 0.62 and a wider electrochemical window of 5 V at 50℃.In addition,the composite electrolyte manifests outstanding compatibility with high-voltage LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)cathode,LiFePO4 cathode and lithium metal anode.The assembled Li/Li symmetric battery exhibits stable Li plating/stripping cycling performance,which can cycle steadily for 1500 h at a capacity of 0.3 mA h cm^(-2).And Li/LiFePO4 battery still maintains a high capacity of 131.54 mA h g^(-1) at 0.5C after 800 cycles,which has a superior capacity retention rate of 93.2%.The obtained novel composite electrolyte has promising application prospects in the field of all-solid-state lithium metal cells.
文摘Nanocrystalline SnO<sub>2</sub> and CuO doped with SnO<sub>2</sub> were prepared by the co-precipitation method and characterized for different physiochemical properties and microbiological activity. The composition and morphological formation were characterized by XRD, HRTEM, Raman, FTIR, and UV-vis spectroscopy. The Powder X-ray analysis reveals that Sn4+ ions have substituted the Cu<sup>2+</sup> ions without changing the monoclinic structure of SnO<sub>2</sub> but the average particle size of the SnO<sub>2</sub> and CuO doped SnO<sub>2</sub> samples from 11 and 5 nm respectively. However, it exhibits an inhibiting strong bacterial growth against tested bacterial strains.
文摘以 Sn Cl4· Ti( OBu) 4、氨水、乙醇为原料 ,采用活性层包覆法 ,制备出 Ti O2 / Sn O2 复合光催化剂 ,并用IR、XRD、TEM和 BET等手段对样品进行了表征 .研究其对有机磷农药敌敌畏的光催化降解效果 ,与单一半导体催化剂 Sn O2 、Ti O2 做了简单对比 .结果表明 :所制 Ti O2 / Sn O2 样品为包覆型结构 ,由锐钛矿型 Ti O2 金红石型 Sn O2 组成 ,与 Sn O2 及 Ti O2 晶体粉末相比所制 Ti O2 / Sn O2 包覆粒子光催化活性得到明显提高 .
文摘利用直流电弧等离子体蒸发 -凝聚法制备 Sn O2 纳米粒子 ,研究了 Sn O2 粒子在等离子体焰流中的形成和生长机理 ,探讨了等离子体发生器功率、气体配比和冷却介质对 Sn O2 纳米粒子粒度和纯度的影响 ,制备出了纯度大于98.8%、粒度可控的 Sn O2 纳米粉末 ,为制造高性能 Sn O2 气敏传感器打下了良好的基础。