Methodology for the electrochemical decomposition of imazethapyr using Ti/SnO2-Sb2O5/PbO2 anode in Na2SO4 medium is suggested in this paper. The electrolysis reaction conditions were optimized. The process of electroc...Methodology for the electrochemical decomposition of imazethapyr using Ti/SnO2-Sb2O5/PbO2 anode in Na2SO4 medium is suggested in this paper. The electrolysis reaction conditions were optimized. The process of electrochemical decomposition was monitored by ultra-violet spectrophotometry and CODCr method. The electrochemical decomposition mechanism of imazethapyr was studied primarily by UV-VIS spectrophotometry. The effectiveness of the electrochemical pretreatment was proved by the comparative aerobic biological treatment test based on the activated sludge process.展开更多
目前在电化学氧化处理法降解苯酚废水的研究过程中,研究者多将重心放在活性电极的探索及制备上,而对于反应器的开发鲜有报道。就这一问题,本文研究了新型微流控反应器中苯酚的电化学降解效果。电化学氧化实验在装有Ti/SnO2-Sb2O5阳极的...目前在电化学氧化处理法降解苯酚废水的研究过程中,研究者多将重心放在活性电极的探索及制备上,而对于反应器的开发鲜有报道。就这一问题,本文研究了新型微流控反应器中苯酚的电化学降解效果。电化学氧化实验在装有Ti/SnO2-Sb2O5阳极的微型流通池中操作进行,实验对循环体系的体积流率ΦV、电极间距h的影响进行了考察。结果表明,当流通电解槽中的阴阳极间距采用微米级尺寸时,苯酚的阳极氧化反应取得了较快的氧化速度。在i=20 m A/cm2、ΦV=0.54 m L/min的电解条件下,电解2~3h苯酚去除率即可达到90%以上,相同流速下电极间距h越小降解速率越快。且由数据回归得到了苯酚的一系列随h的减小而增大的准一级反应的反应速率常数。这一结论表明微流控电解槽内的苯酚降解过程主要传质控制过程。展开更多
The electrochemical oxidation of chlorimuron-ethyl on metry. The electrochemical behaviour of the electrode in a sodium Ti/SnO2-Sb2O5/PbO2 electrode was studied by cyclic voltamsulfate solution and in the mixture solu...The electrochemical oxidation of chlorimuron-ethyl on metry. The electrochemical behaviour of the electrode in a sodium Ti/SnO2-Sb2O5/PbO2 electrode was studied by cyclic voltamsulfate solution and in the mixture solution of sodium sulfate and chlorimuron-ethyl was studied. The experimental results of cyclic voltammetry show that the acidic medium was suitable for the efficient electrochemical oxidation of chlorimuron-ethyl. Some electro-generated reagent was formed in the electrolysis process and chlorimuron-ethyl could be oxidized by the electro-generated reagent. A Ti/SnO2-Sb2O5/PbO2 electrode was used as the anode and the electrolysis experiment was carried out under the optimized conditions. The electrolysis process was monitored by UV-Vis spectrometry and high performance liquid chromatography(HPLC), and the chemical oxygen demand(COD) was determined by the potassium dichromate method. The mechanism of chlorimuron-ethyl to be oxided was studied primarily by the cyclic voltammetry and UV-Vis spectrometry. The results of electrolysis experiment demonstrate the possibility of the electrode to be used as an anode for the electrochemical treatment of chlorimuron-ethyl contained in waste water.展开更多
The Ti/SnO2-Sb2O5/PbO2 electrode was prepared by electrodeposition method onto Ti substrate with SnO2-Sb2O5 interlayer. Microstructure information of SnO2-Sb2O5 interlayer and PbO2 coating was characterized by scannin...The Ti/SnO2-Sb2O5/PbO2 electrode was prepared by electrodeposition method onto Ti substrate with SnO2-Sb2O5 interlayer. Microstructure information of SnO2-Sb2O5 interlayer and PbO2 coating was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Our study shows that the titanium substrate is completely covered by the SnO2-Sb2O5 solid solution interlayer and the interlayer combines the Ti substrate closely with the PbO2 coating. The electrochemical performance of the Ti/SnO2-Sb2O5/PbO2 electrode was studied by cyclic voltammogram (CV), electrochemical impedance spectros-copy (EIS) and accelerated life test. The results show the electrochemical activity, electrical conductivity and stabil- ity of Ti-substrate lead dioxide electrode are increased. The deactivation process of the Ti/SnOe-Sb2O5/PbO2 elec- trode was also studied by the EIS. The SnO2-Sb2O5 interlayer can effectively prevent the growth of a TiO2 insulating layer between the substrate and the PbO2 coating during the lifetime tests, thus maintain high activity of Ti/SnO2-Sb2O5/PbO2 electrode for 10 times longer than Ti/PbO2 electrode without interlayer.展开更多
PdAuIr/C-Sb2O5·SnO2electrocatalysts with Pd∶Au∶Ir molar ratios of 90∶5∶5,70∶20∶10 and 50∶45∶5 were prepared by borohydride reduction method.These electrocatalysts were characterized by EDX,X-ray diffracti...PdAuIr/C-Sb2O5·SnO2electrocatalysts with Pd∶Au∶Ir molar ratios of 90∶5∶5,70∶20∶10 and 50∶45∶5 were prepared by borohydride reduction method.These electrocatalysts were characterized by EDX,X-ray diffraction,transmission electron microscopy and the catalytic activity toward formic acid electro-oxidation in acid medium investigated by cyclic voltammetry(CV),chroamperometry(CA)and tests on direct formic acid fuel cell(DFAFC)at 100℃.X-ray diffractograms of PdAuIr/C-Sb2O5·SnO2electrocatalysts showed the presence of Pd fcc phase,Pd-Au fcc alloys,carbon and ATO phases,while Ir phases were not observed.TEM micrographs and histograms indicated that the nanoparticles were not well dispersed on the support and some agglomerates.The cyclic voltammetry and chroamperometry studies showed that PdAuIr/C-Sb2O5·SnO2(50∶45∶5)had superior performance toward formic acid electro-oxidation at 25℃compared to PdAuIr/C-Sb2O5·SnO2(70∶20∶10),PdAuIr/C-Sb2O5·SnO2(90∶5∶5)and Pd/C-Sb2O5·SnO2electrocatalysts.The experiments in a single DFAFC also showed that all PdAuIr/C-Sb2O5·SnO2electrocatalysts exhibited higher performance for formic acid oxidation in comparison with Pd/C-Sb2O5·SnO2electrocatalysts,however PdAuIr/C-Sb2O5·SnO2(90∶5∶5)had superior performance.These results indicated that the addition of Au and Ir to Pd favor the electro-oxidation of formic acid,which could be attributed to the bifunctional mechanism(the presence of ATO,Au and Ir oxides species)associated to the electronic effect(Pd-Au fcc alloys).展开更多
The Ti/SnO2 Sb2O4 electrode has been prepared by the electroplate sinter method. The effect of SbCl3 adding amount and sintering temperature on its electrode lifetime and oxygen evolution potential were investigated b...The Ti/SnO2 Sb2O4 electrode has been prepared by the electroplate sinter method. The effect of SbCl3 adding amount and sintering temperature on its electrode lifetime and oxygen evolution potential were investigated by means of EDX, SEM and XRD analysis. The results indicated that the electrode appeared the best performance when the SbCl3 adding amounts was 0.2g and the sintering temperature was 550℃. In optimized conditions Ti substrate was entirely covered by SnO2 Sb2O4 and the combinations among them were tight. Due to the use of electroplate method, the electrical conductivity, the oxygen evolution potential and the electrode lifetime were increased, so the electro catalytic activity and the electrochemical stability of the prepared electrode were found to be superior.展开更多
文摘Methodology for the electrochemical decomposition of imazethapyr using Ti/SnO2-Sb2O5/PbO2 anode in Na2SO4 medium is suggested in this paper. The electrolysis reaction conditions were optimized. The process of electrochemical decomposition was monitored by ultra-violet spectrophotometry and CODCr method. The electrochemical decomposition mechanism of imazethapyr was studied primarily by UV-VIS spectrophotometry. The effectiveness of the electrochemical pretreatment was proved by the comparative aerobic biological treatment test based on the activated sludge process.
文摘目前在电化学氧化处理法降解苯酚废水的研究过程中,研究者多将重心放在活性电极的探索及制备上,而对于反应器的开发鲜有报道。就这一问题,本文研究了新型微流控反应器中苯酚的电化学降解效果。电化学氧化实验在装有Ti/SnO2-Sb2O5阳极的微型流通池中操作进行,实验对循环体系的体积流率ΦV、电极间距h的影响进行了考察。结果表明,当流通电解槽中的阴阳极间距采用微米级尺寸时,苯酚的阳极氧化反应取得了较快的氧化速度。在i=20 m A/cm2、ΦV=0.54 m L/min的电解条件下,电解2~3h苯酚去除率即可达到90%以上,相同流速下电极间距h越小降解速率越快。且由数据回归得到了苯酚的一系列随h的减小而增大的准一级反应的反应速率常数。这一结论表明微流控电解槽内的苯酚降解过程主要传质控制过程。
基金Supported by the Science and Technology Foundation of the Education Department of Liaoning Province,China (No.2009A557)
文摘The electrochemical oxidation of chlorimuron-ethyl on metry. The electrochemical behaviour of the electrode in a sodium Ti/SnO2-Sb2O5/PbO2 electrode was studied by cyclic voltamsulfate solution and in the mixture solution of sodium sulfate and chlorimuron-ethyl was studied. The experimental results of cyclic voltammetry show that the acidic medium was suitable for the efficient electrochemical oxidation of chlorimuron-ethyl. Some electro-generated reagent was formed in the electrolysis process and chlorimuron-ethyl could be oxidized by the electro-generated reagent. A Ti/SnO2-Sb2O5/PbO2 electrode was used as the anode and the electrolysis experiment was carried out under the optimized conditions. The electrolysis process was monitored by UV-Vis spectrometry and high performance liquid chromatography(HPLC), and the chemical oxygen demand(COD) was determined by the potassium dichromate method. The mechanism of chlorimuron-ethyl to be oxided was studied primarily by the cyclic voltammetry and UV-Vis spectrometry. The results of electrolysis experiment demonstrate the possibility of the electrode to be used as an anode for the electrochemical treatment of chlorimuron-ethyl contained in waste water.
文摘The Ti/SnO2-Sb2O5/PbO2 electrode was prepared by electrodeposition method onto Ti substrate with SnO2-Sb2O5 interlayer. Microstructure information of SnO2-Sb2O5 interlayer and PbO2 coating was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Our study shows that the titanium substrate is completely covered by the SnO2-Sb2O5 solid solution interlayer and the interlayer combines the Ti substrate closely with the PbO2 coating. The electrochemical performance of the Ti/SnO2-Sb2O5/PbO2 electrode was studied by cyclic voltammogram (CV), electrochemical impedance spectros-copy (EIS) and accelerated life test. The results show the electrochemical activity, electrical conductivity and stabil- ity of Ti-substrate lead dioxide electrode are increased. The deactivation process of the Ti/SnOe-Sb2O5/PbO2 elec- trode was also studied by the EIS. The SnO2-Sb2O5 interlayer can effectively prevent the growth of a TiO2 insulating layer between the substrate and the PbO2 coating during the lifetime tests, thus maintain high activity of Ti/SnO2-Sb2O5/PbO2 electrode for 10 times longer than Ti/PbO2 electrode without interlayer.
基金the Laboratório de Microscopia do Centro de Ciências e Tecnologia de Materiais(CCTM) by TEM measurements,FAPESP(2011/18246-0,2012/03516-5) and CNPQ(150639/2013-9)for the financial support
文摘PdAuIr/C-Sb2O5·SnO2electrocatalysts with Pd∶Au∶Ir molar ratios of 90∶5∶5,70∶20∶10 and 50∶45∶5 were prepared by borohydride reduction method.These electrocatalysts were characterized by EDX,X-ray diffraction,transmission electron microscopy and the catalytic activity toward formic acid electro-oxidation in acid medium investigated by cyclic voltammetry(CV),chroamperometry(CA)and tests on direct formic acid fuel cell(DFAFC)at 100℃.X-ray diffractograms of PdAuIr/C-Sb2O5·SnO2electrocatalysts showed the presence of Pd fcc phase,Pd-Au fcc alloys,carbon and ATO phases,while Ir phases were not observed.TEM micrographs and histograms indicated that the nanoparticles were not well dispersed on the support and some agglomerates.The cyclic voltammetry and chroamperometry studies showed that PdAuIr/C-Sb2O5·SnO2(50∶45∶5)had superior performance toward formic acid electro-oxidation at 25℃compared to PdAuIr/C-Sb2O5·SnO2(70∶20∶10),PdAuIr/C-Sb2O5·SnO2(90∶5∶5)and Pd/C-Sb2O5·SnO2electrocatalysts.The experiments in a single DFAFC also showed that all PdAuIr/C-Sb2O5·SnO2electrocatalysts exhibited higher performance for formic acid oxidation in comparison with Pd/C-Sb2O5·SnO2electrocatalysts,however PdAuIr/C-Sb2O5·SnO2(90∶5∶5)had superior performance.These results indicated that the addition of Au and Ir to Pd favor the electro-oxidation of formic acid,which could be attributed to the bifunctional mechanism(the presence of ATO,Au and Ir oxides species)associated to the electronic effect(Pd-Au fcc alloys).
文摘The Ti/SnO2 Sb2O4 electrode has been prepared by the electroplate sinter method. The effect of SbCl3 adding amount and sintering temperature on its electrode lifetime and oxygen evolution potential were investigated by means of EDX, SEM and XRD analysis. The results indicated that the electrode appeared the best performance when the SbCl3 adding amounts was 0.2g and the sintering temperature was 550℃. In optimized conditions Ti substrate was entirely covered by SnO2 Sb2O4 and the combinations among them were tight. Due to the use of electroplate method, the electrical conductivity, the oxygen evolution potential and the electrode lifetime were increased, so the electro catalytic activity and the electrochemical stability of the prepared electrode were found to be superior.