Cr 2 O 3-coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode materials were synthesized by a novel method. The structure and electrochemical properties of prepared cathode materials were measured using X-ray diffraction (XRD), ...Cr 2 O 3-coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode materials were synthesized by a novel method. The structure and electrochemical properties of prepared cathode materials were measured using X-ray diffraction (XRD), scanning electron microscopy (SEM), charge-discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The measured results indicate that surface coating with 1.0 wt% Cr 2 O 3 does not affect the LiNi 1/3 Co 1/3 Mn 1/3 O 2 crystal structure (α-NaFeO 2 ) of the cathode material compared to the pristine material, the surfaces of LiNi 1/3 Co 1/3 Mn 1/3 O 2 samples are covered with Cr 2 O 3 well, and the LiNi 1/3 Co 1/3 Mn 1/3 O 2 material coated with Cr 2 O 3 has better electrochemical performance under a high cutoff voltage of 4.5 V. Moreover, at room temperature, the initial discharging capacity of LiNi 1/3 Co 1/3 Mn 1/3 O 2 material coated with 1.0 wt.% Cr 2 O 3 at 0.5C reaches 169 mAh·g 1 and the capacity retention is 83.1% after 30 cycles, while that of the bare LiNi 1/3 Co 1/3 Mn 1/3 O 2 is only 160.8 mAh·g 1 and 72.5%. Finally, the coated samples are found to display the improved electrochemical performance, which is mainly attributed to the suppression of the charge-transfer resistance at the interface between the cathode and the electrolyte.展开更多
To improve the cycle stability at high voltage and high charge/discharge rate, spherical LiNi1/3Co1/3Mn1/3O2 was coated with Al2O3 by using heterogeneous nucleation process, and the physical and electrochemical proper...To improve the cycle stability at high voltage and high charge/discharge rate, spherical LiNi1/3Co1/3Mn1/3O2 was coated with Al2O3 by using heterogeneous nucleation process, and the physical and electrochemical properties were studied. The SEM images show that there is a uniform coating on the modified spherical LiNi1/3Co1/3Mn1/3O2. The electrochemical tests indicate that the properties of LiNi1/3Co1/3Mn1/3O2 coated with 0.5% aluminum oxide are the best. The initial capacities are 150 and 173 mA·h/g at the rate of 1C in the voltage range of 2.7-4.3 V and 2.7-4.6 V, respectively, and the discharge capacities maintain about 99% and 85% after 30 cycles, respectively. While those of the bare LiNi1/3Co1/3Mn1/3O2 are only 90% and 75%, respectively. The CV tests of LiNi1/3Co1/3Mn1/3O2 show that Al2O3-coating can restrain the oxide-reduction peak currents fading during the charge/discharge course.展开更多
采用碳酸盐共沉淀-高温固相法制备了一系列表面碳包覆改性(w=1.0%,2.0%,3.0%)的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,借助X射线衍射(XRD)分析、扫描电镜(SEM)、透射电镜(TEM)、电化学阻抗谱(EIS)和恒电流充放电测试等表征手段对材料...采用碳酸盐共沉淀-高温固相法制备了一系列表面碳包覆改性(w=1.0%,2.0%,3.0%)的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,借助X射线衍射(XRD)分析、扫描电镜(SEM)、透射电镜(TEM)、电化学阻抗谱(EIS)和恒电流充放电测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,碳成功地包覆在了材料颗粒的表面,碳包覆改性后的材料具有良好的α-Na Fe O2结构(空间群:R3m),且随着包碳量的增加,一次颗粒平均尺寸逐渐增大(从177 nm增至209 nm)。表面的无定形碳层可以提高材料的电子导电率,减少电极材料与电解液的副反应,故而碳包覆材料的电化学性能都有了一定程度提升。包覆碳量为2.0%的样品高倍率和长循环性能最好,在2.7~4.3 V,1C下循环100次后,容量保持率为93%;在0.1C、0.2C、0.5C、1C、3C、5C、10C和20C时的放电比容量分别为:155、148、145、138、127、116、104和96 m Ah·g-1。在超高倍率50C(9 A·g-1)时,其放电比容量还能达到62 m Ah·g-1(原始LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2材料仅为30 m Ah·g-1),倍率性能十分优异。展开更多
基金supported by the National Key Project for Basic Research of China (No. 2005CB623605)the National Natural Science Foundation of China (No. 11074039)the National Science Foundation for Young Scholars (No.11004032)
文摘Cr 2 O 3-coated LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode materials were synthesized by a novel method. The structure and electrochemical properties of prepared cathode materials were measured using X-ray diffraction (XRD), scanning electron microscopy (SEM), charge-discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The measured results indicate that surface coating with 1.0 wt% Cr 2 O 3 does not affect the LiNi 1/3 Co 1/3 Mn 1/3 O 2 crystal structure (α-NaFeO 2 ) of the cathode material compared to the pristine material, the surfaces of LiNi 1/3 Co 1/3 Mn 1/3 O 2 samples are covered with Cr 2 O 3 well, and the LiNi 1/3 Co 1/3 Mn 1/3 O 2 material coated with Cr 2 O 3 has better electrochemical performance under a high cutoff voltage of 4.5 V. Moreover, at room temperature, the initial discharging capacity of LiNi 1/3 Co 1/3 Mn 1/3 O 2 material coated with 1.0 wt.% Cr 2 O 3 at 0.5C reaches 169 mAh·g 1 and the capacity retention is 83.1% after 30 cycles, while that of the bare LiNi 1/3 Co 1/3 Mn 1/3 O 2 is only 160.8 mAh·g 1 and 72.5%. Finally, the coated samples are found to display the improved electrochemical performance, which is mainly attributed to the suppression of the charge-transfer resistance at the interface between the cathode and the electrolyte.
文摘To improve the cycle stability at high voltage and high charge/discharge rate, spherical LiNi1/3Co1/3Mn1/3O2 was coated with Al2O3 by using heterogeneous nucleation process, and the physical and electrochemical properties were studied. The SEM images show that there is a uniform coating on the modified spherical LiNi1/3Co1/3Mn1/3O2. The electrochemical tests indicate that the properties of LiNi1/3Co1/3Mn1/3O2 coated with 0.5% aluminum oxide are the best. The initial capacities are 150 and 173 mA·h/g at the rate of 1C in the voltage range of 2.7-4.3 V and 2.7-4.6 V, respectively, and the discharge capacities maintain about 99% and 85% after 30 cycles, respectively. While those of the bare LiNi1/3Co1/3Mn1/3O2 are only 90% and 75%, respectively. The CV tests of LiNi1/3Co1/3Mn1/3O2 show that Al2O3-coating can restrain the oxide-reduction peak currents fading during the charge/discharge course.
文摘采用碳酸盐共沉淀-高温固相法制备了一系列表面碳包覆改性(w=1.0%,2.0%,3.0%)的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,借助X射线衍射(XRD)分析、扫描电镜(SEM)、透射电镜(TEM)、电化学阻抗谱(EIS)和恒电流充放电测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,碳成功地包覆在了材料颗粒的表面,碳包覆改性后的材料具有良好的α-Na Fe O2结构(空间群:R3m),且随着包碳量的增加,一次颗粒平均尺寸逐渐增大(从177 nm增至209 nm)。表面的无定形碳层可以提高材料的电子导电率,减少电极材料与电解液的副反应,故而碳包覆材料的电化学性能都有了一定程度提升。包覆碳量为2.0%的样品高倍率和长循环性能最好,在2.7~4.3 V,1C下循环100次后,容量保持率为93%;在0.1C、0.2C、0.5C、1C、3C、5C、10C和20C时的放电比容量分别为:155、148、145、138、127、116、104和96 m Ah·g-1。在超高倍率50C(9 A·g-1)时,其放电比容量还能达到62 m Ah·g-1(原始LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2材料仅为30 m Ah·g-1),倍率性能十分优异。