Significant progress has recently been made in enhancing the power conversion efficiency(PCE)of perovskite solar cells(PSCs).The electron transport layer(ETL),as an essential component of PSCs,significantly influences...Significant progress has recently been made in enhancing the power conversion efficiency(PCE)of perovskite solar cells(PSCs).The electron transport layer(ETL),as an essential component of PSCs,significantly influences the performance of devices.Traditional spin-coating method for preparing the ETL fails to fully cover the cusp of FTO transparent conductive glass substrate,leading to direct contact between perovskite film and FTO substrate,which induces charge recombination and reduces the performance of PSCs.To address this issue,an in-situ growth method was proposed to prepare conformal SnO_(2) films on FTO glass substrates in this study.The resulting SnO_(2) films are not only dense and uniform,fully covering the cusp of the FTO glass substrates and reducing the contact area between the FTO substrates and the perovskite films,but also facilitating the formation of perovskite films with large grain sizes.Moreover,the conformal SnO_(2) films can improve the charge extraction at the SnO_(2)/perovskite interface,reduce the trap density and trap-assisted recombination in PSCs,and thus enhance the PCE of PSCs.Through comparative experiments,it is found that the PSCs with in-situ grown SnO_(2) films show an improved PCE of 21.97%,which significantly increased compared to that with spin-coated SnO_(2) films(20.93%).All above data demonstrate that the as-prepared SnO_(2) film can serve as an ideal ETL.It is worth mentioning that this method avoids the use of corrosive hydrochloric acid and toxic thioglycolic acid,and it can also be extended to ITO flexible transparent conductive substrates in the future.展开更多
The Y,F,and Ag tridoped TiO_(2)/SnO_(2) composite nanocrystalline film(YFAg–TS)with prominent photocatalytic performance was prepared by the modified sol–gel method and was characterized by utilizing X-ray diffracti...The Y,F,and Ag tridoped TiO_(2)/SnO_(2) composite nanocrystalline film(YFAg–TS)with prominent photocatalytic performance was prepared by the modified sol–gel method and was characterized by utilizing X-ray diffraction(XRD),differential thermal and thermogravimetric(DTA–TG)analysis,scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),Brunauer–Emmett–Teller(BET)method,ultraviolet–visible diffuse reflectance spectroscopy(UV–vis DRS),and photoluminescence(PL).The XRD and DTA–TG results expose that the YFAg–TS catalyst is a mixed phase consisting of anatase,rutile,and chlorargyrite,which is beneficial to improving the photocatalytic performance of TiO_(2).The SEM,TEM,and BET results disclose that the YFAg–TS film has smaller nanoparticles,higher specific surface area,and narrower pore size compared with pure TiO_(2) film.The XRD and TEM results exhibit that a part of yttrium can enter the TiO_(2) lattice to induce lattice distortion.The XPS results confirm the presence of Y^(3+)state in the YFAg–TS sample,and Y^(3+)ions can act as the trapping site of electrons to expedite the separation of electrons and holes.The UV–vis DRS results reveal that the YFAg–TS film has an obvious absorption edge shift and a narrower bandgap(2.70 eV)compared with pure TiO_(2) film.The PL results show that the YFAg–TS film has the highest photogenerated electrons and holes separation efficiency and charges transfer efficiency among all samples.The photocatalytic activity of the YFAg–TS was assessed by monitoring the degradation of methyl green and formaldehyde solution.The results manifest that the YFAg–TS film has high stability and excellent photocatalytic performance.The possible synergistic photocatalytic mechanism of YFAg–TS films has been discussed in this paper.展开更多
Thin layer polycrystal oxides (amorphous and micro-crystalline) TiO2(Fe2O3, SnO2 and ln2O3 · Sn) are prepared by the organometallic chemical vapor deposition (MO-CVD) technique at 300-410℃ . Their structures, su...Thin layer polycrystal oxides (amorphous and micro-crystalline) TiO2(Fe2O3, SnO2 and ln2O3 · Sn) are prepared by the organometallic chemical vapor deposition (MO-CVD) technique at 300-410℃ . Their structures, surface states and photoelectrochemical properties are described by X-ray diffraction (XRD), electron microscopy and three electrode methods. The experiments indicate that these thin layer oxides are suitable for formly transparent conductive coating to serve as photoelectrodes and photocatalysts for splitting of water.展开更多
We studied fluorine-doped tin oxide on a glass substrate at 350℃using an ultrasonic spray technique. Tin(Ⅱ) chloride dehydrate,ammonium fluoride dehydrate,ethanol and NaOH were used as the starting material, dopan...We studied fluorine-doped tin oxide on a glass substrate at 350℃using an ultrasonic spray technique. Tin(Ⅱ) chloride dehydrate,ammonium fluoride dehydrate,ethanol and NaOH were used as the starting material, dopant source,solvent and stabilizer,respectively.The SnO_2:F thin films were deposited at 350℃and a pending time of 60 and 90 s.The as-grown films exhibit a hexagonal wurtzite structure and have(101) orientation.The G = 31.82 nm value of the grain size is attained from SnO_2:F film grown at 90 s,and the transmittance is greater than 80%in the visible region.The optical gap energy is found to measure 4.05 eV for the film prepared at 90 s, and the increase in the electrical conductivity of the film with the temperature of the sample is up to a maximum value of 265.58(Ω·cm)^(-1),with the maximum activation energy value of the films being found to measure 22.85 meV,indicating that the films exhibit an n-type semiconducting nature.展开更多
Thin nanocomposite fflms based on tin dioxide with a low content of zinc oxide(0.5–5 mol.%)were obtained by the sol–gel method.The synthesized fflms are 300–600 nm thick and contains pore sizes of 19–29 nm.The res...Thin nanocomposite fflms based on tin dioxide with a low content of zinc oxide(0.5–5 mol.%)were obtained by the sol–gel method.The synthesized fflms are 300–600 nm thick and contains pore sizes of 19–29 nm.The resulting ZnO–SnO_(2) fflms were comprehensively studied by atomic force and Kelvin probe force microscopy,X-ray diffraction,scanning electron microscopy,and high-resolution X-ray photoelectron spectroscopy spectra.The photoconductivity parameters on exposure to light with a wavelength of 470 nm were also studied.The study of the photosensitivity kinetics of ZnO–SnO_(2) fflms showed that the fflm with the Zn:Sn ratio equal to 0.5:99.5 has the minimum value of the charge carrier generation time constant.Measurements of the activation energy of the conductivity,potential barrier,and surface potential of ZnO–SnO_(2) fflms showed that these parameters have maxima at ZnO concentrations of 0.5 mol.%and 1 mol.%.Films with 1 mol.%ZnO exhibit high response values when exposed to 5–50 ppm of nitrogen dioxide at operating temperatures of 200℃ and 250℃.展开更多
An investigation of Fe-doping effect on SnO_(2) thin films was performed in this study using thermal spray pyrolysis(TSP) method.The surface morphology and structural,optical and electrical properties were studied by ...An investigation of Fe-doping effect on SnO_(2) thin films was performed in this study using thermal spray pyrolysis(TSP) method.The surface morphology and structural,optical and electrical properties were studied by field energy scanning electron microscope(FESEM),X-ray diffraction(XRD),ultraviolet-visible(UV-Vis) spectroscopy and four-point probe method.FES EM images demonstrate that the surface morphology of the as-deposited films varies when Fe-doping content varies.XRD studies reveal that crystallite size and preferential growth orientations of the films are dependent on Fe-doping concentrations.The grain size is found to decrease with the increase in Fe content.These studies also specify that the films have tetragonal rutile-type structure with mixed secondary phases.The texture coefficient value of(110) plane increases with the concomitant in-plane(220) decrease in higher doping concentrations.The resistivity and the optical absorbance are found to increase with Fe concentration.The direct optical band gap decreases from 3.94 to3.52 eV with increasing Fe content.展开更多
SnO_(2) has been proven to be an effective electron transport layer(ETL)material for perovskite solar cells(PSCs)owing to its excellent electrical and optical properties.Here,we introduce a viable spray coating method...SnO_(2) has been proven to be an effective electron transport layer(ETL)material for perovskite solar cells(PSCs)owing to its excellent electrical and optical properties.Here,we introduce a viable spray coating method for the preparation of SnO2 films.Then,we employ a SnO_(2) film prepared using the spray coating method as an ETL for PSCs.The PSC based on the spray-coated SnO_(2) ETL achieves a power conversion efficiency of 17.78%,which is comparable to that of PSCs based on conventional spin-coated SnO_(2) films.The large-area SnO_(2) films prepared by spray coating exhibit good repeatability for device performance.This study shows that SnO_(2) films prepared by spray coating can be applied as ETLs for stable and high-efficiency PSCs.Because the proposed method involves low material consumption,it enables the low-cost and large-scale production of PSCs.展开更多
基金Space Application System of China Manned Space Program。
文摘Significant progress has recently been made in enhancing the power conversion efficiency(PCE)of perovskite solar cells(PSCs).The electron transport layer(ETL),as an essential component of PSCs,significantly influences the performance of devices.Traditional spin-coating method for preparing the ETL fails to fully cover the cusp of FTO transparent conductive glass substrate,leading to direct contact between perovskite film and FTO substrate,which induces charge recombination and reduces the performance of PSCs.To address this issue,an in-situ growth method was proposed to prepare conformal SnO_(2) films on FTO glass substrates in this study.The resulting SnO_(2) films are not only dense and uniform,fully covering the cusp of the FTO glass substrates and reducing the contact area between the FTO substrates and the perovskite films,but also facilitating the formation of perovskite films with large grain sizes.Moreover,the conformal SnO_(2) films can improve the charge extraction at the SnO_(2)/perovskite interface,reduce the trap density and trap-assisted recombination in PSCs,and thus enhance the PCE of PSCs.Through comparative experiments,it is found that the PSCs with in-situ grown SnO_(2) films show an improved PCE of 21.97%,which significantly increased compared to that with spin-coated SnO_(2) films(20.93%).All above data demonstrate that the as-prepared SnO_(2) film can serve as an ideal ETL.It is worth mentioning that this method avoids the use of corrosive hydrochloric acid and toxic thioglycolic acid,and it can also be extended to ITO flexible transparent conductive substrates in the future.
基金Project supported by the Natural Science Foundation of Shandong Province (ZR2016BM30)。
文摘The Y,F,and Ag tridoped TiO_(2)/SnO_(2) composite nanocrystalline film(YFAg–TS)with prominent photocatalytic performance was prepared by the modified sol–gel method and was characterized by utilizing X-ray diffraction(XRD),differential thermal and thermogravimetric(DTA–TG)analysis,scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),Brunauer–Emmett–Teller(BET)method,ultraviolet–visible diffuse reflectance spectroscopy(UV–vis DRS),and photoluminescence(PL).The XRD and DTA–TG results expose that the YFAg–TS catalyst is a mixed phase consisting of anatase,rutile,and chlorargyrite,which is beneficial to improving the photocatalytic performance of TiO_(2).The SEM,TEM,and BET results disclose that the YFAg–TS film has smaller nanoparticles,higher specific surface area,and narrower pore size compared with pure TiO_(2) film.The XRD and TEM results exhibit that a part of yttrium can enter the TiO_(2) lattice to induce lattice distortion.The XPS results confirm the presence of Y^(3+)state in the YFAg–TS sample,and Y^(3+)ions can act as the trapping site of electrons to expedite the separation of electrons and holes.The UV–vis DRS results reveal that the YFAg–TS film has an obvious absorption edge shift and a narrower bandgap(2.70 eV)compared with pure TiO_(2) film.The PL results show that the YFAg–TS film has the highest photogenerated electrons and holes separation efficiency and charges transfer efficiency among all samples.The photocatalytic activity of the YFAg–TS was assessed by monitoring the degradation of methyl green and formaldehyde solution.The results manifest that the YFAg–TS film has high stability and excellent photocatalytic performance.The possible synergistic photocatalytic mechanism of YFAg–TS films has been discussed in this paper.
基金Supported by the National Natural Science Foundation of China.
文摘Thin layer polycrystal oxides (amorphous and micro-crystalline) TiO2(Fe2O3, SnO2 and ln2O3 · Sn) are prepared by the organometallic chemical vapor deposition (MO-CVD) technique at 300-410℃ . Their structures, surface states and photoelectrochemical properties are described by X-ray diffraction (XRD), electron microscopy and three electrode methods. The experiments indicate that these thin layer oxides are suitable for formly transparent conductive coating to serve as photoelectrodes and photocatalysts for splitting of water.
文摘We studied fluorine-doped tin oxide on a glass substrate at 350℃using an ultrasonic spray technique. Tin(Ⅱ) chloride dehydrate,ammonium fluoride dehydrate,ethanol and NaOH were used as the starting material, dopant source,solvent and stabilizer,respectively.The SnO_2:F thin films were deposited at 350℃and a pending time of 60 and 90 s.The as-grown films exhibit a hexagonal wurtzite structure and have(101) orientation.The G = 31.82 nm value of the grain size is attained from SnO_2:F film grown at 90 s,and the transmittance is greater than 80%in the visible region.The optical gap energy is found to measure 4.05 eV for the film prepared at 90 s, and the increase in the electrical conductivity of the film with the temperature of the sample is up to a maximum value of 265.58(Ω·cm)^(-1),with the maximum activation energy value of the films being found to measure 22.85 meV,indicating that the films exhibit an n-type semiconducting nature.
基金The authors are grateful to the PHENMA 2021–2022 conference for the possibility of manuscript publication.The research was carried out at the expense of the grant of the Russian Science Foundation No.22-29-00621,(https://rscf.ru/project/22-29-00621/)at the Southern Federal University.
文摘Thin nanocomposite fflms based on tin dioxide with a low content of zinc oxide(0.5–5 mol.%)were obtained by the sol–gel method.The synthesized fflms are 300–600 nm thick and contains pore sizes of 19–29 nm.The resulting ZnO–SnO_(2) fflms were comprehensively studied by atomic force and Kelvin probe force microscopy,X-ray diffraction,scanning electron microscopy,and high-resolution X-ray photoelectron spectroscopy spectra.The photoconductivity parameters on exposure to light with a wavelength of 470 nm were also studied.The study of the photosensitivity kinetics of ZnO–SnO_(2) fflms showed that the fflm with the Zn:Sn ratio equal to 0.5:99.5 has the minimum value of the charge carrier generation time constant.Measurements of the activation energy of the conductivity,potential barrier,and surface potential of ZnO–SnO_(2) fflms showed that these parameters have maxima at ZnO concentrations of 0.5 mol.%and 1 mol.%.Films with 1 mol.%ZnO exhibit high response values when exposed to 5–50 ppm of nitrogen dioxide at operating temperatures of 200℃ and 250℃.
文摘An investigation of Fe-doping effect on SnO_(2) thin films was performed in this study using thermal spray pyrolysis(TSP) method.The surface morphology and structural,optical and electrical properties were studied by field energy scanning electron microscope(FESEM),X-ray diffraction(XRD),ultraviolet-visible(UV-Vis) spectroscopy and four-point probe method.FES EM images demonstrate that the surface morphology of the as-deposited films varies when Fe-doping content varies.XRD studies reveal that crystallite size and preferential growth orientations of the films are dependent on Fe-doping concentrations.The grain size is found to decrease with the increase in Fe content.These studies also specify that the films have tetragonal rutile-type structure with mixed secondary phases.The texture coefficient value of(110) plane increases with the concomitant in-plane(220) decrease in higher doping concentrations.The resistivity and the optical absorbance are found to increase with Fe concentration.The direct optical band gap decreases from 3.94 to3.52 eV with increasing Fe content.
基金The authors gratefully acknowledge financial support from the National Natural Science Foundation of China(Grants No.11974129)to Xiao-Feng Wang and the Fundamental Research Funds for the Central Universities,Jilin University.
文摘SnO_(2) has been proven to be an effective electron transport layer(ETL)material for perovskite solar cells(PSCs)owing to its excellent electrical and optical properties.Here,we introduce a viable spray coating method for the preparation of SnO2 films.Then,we employ a SnO_(2) film prepared using the spray coating method as an ETL for PSCs.The PSC based on the spray-coated SnO_(2) ETL achieves a power conversion efficiency of 17.78%,which is comparable to that of PSCs based on conventional spin-coated SnO_(2) films.The large-area SnO_(2) films prepared by spray coating exhibit good repeatability for device performance.This study shows that SnO_(2) films prepared by spray coating can be applied as ETLs for stable and high-efficiency PSCs.Because the proposed method involves low material consumption,it enables the low-cost and large-scale production of PSCs.