In this study, Bismuth doped Titanium dioxide thin films were deposited on glass substrates by a pulse laser deposition using laser. The effect of annealing temperature on the structural and electrical properties was ...In this study, Bismuth doped Titanium dioxide thin films were deposited on glass substrates by a pulse laser deposition using laser. The effect of annealing temperature on the structural and electrical properties was investigated. X-ray diffraction pattern for pure and doped titanium dioxide films with different doping different ratio with Bi show that these films have amorphous structure oanvert to polycrystalline structure with annealing and doping and have a good identically with standard peaks for Anatase and Rutile phases. The orientation was at specific direction for Rutile. The crystalline of films increases by the increase of doping ratio. The crystalline increased with annealing temperature. Annealed films at different annealing temperatures have been studied. The results show that these films have two activation energies and by increasing the doping ratio, the activation energies and the conductivity increase. Both the annealing and composition effects on Hall constant, density of electron carders and Hall mobility are studied. Hall Effect measurements show that all films have n- type charge conductivity and the concentration increases while the mobility decreases with doping and annealing.展开更多
Tin monosulphide(SnS) thin films capped by PVA have been successfully deposited on glass substrates for cost effective photovoltaic device applications by a simple and low-cost wet chemical process, chemical bath depo...Tin monosulphide(SnS) thin films capped by PVA have been successfully deposited on glass substrates for cost effective photovoltaic device applications by a simple and low-cost wet chemical process, chemical bath deposition(CBD) at different bath temperatures varying in the range, 50–80 °C. X–ray diffraction analysis showed that the deposited films were polycrystalline in nature, showing orthorhombic structure with an intense peak corresponding to(040) plane of SnS. These observations were further confirmed by Raman analysis. FTIR spectra showed the absorption bands which corresponds to PVA in addition to SnS.The scanning electron microscopy and atomic force microscopy studies revealed that the deposited SnS films were uniform and nanostructured with an average particle size of 4.9 to 7.6 nm. The optical investigations showed that the layers were highly absorbing with the optical absorption coefficient ~10~5 cm^(-1). A decrease in optical band gap from 1.92 to 1.55 eV with an increase of bath temperature was observed. The observed band gap values were higher than the bulk value of 1.3 eV, which might be due to quantum confinement effect. The optical band gap values were also used to calculate particle size and the results are discussed.展开更多
采用高分子辅助沉积法制备了Si基La BaCo2O5+δ(LBCO)薄膜,主要研究了Si基LBCO薄膜的电输运性质及氧敏性质。通过对LBCO薄膜的电输运性质研究,发现LaBaCo2O5+δ薄膜的激活能Ea为0.32 e V,远小于同类体材料PrBaCo2O5+δ激活能(Ea=0.67 e ...采用高分子辅助沉积法制备了Si基La BaCo2O5+δ(LBCO)薄膜,主要研究了Si基LBCO薄膜的电输运性质及氧敏性质。通过对LBCO薄膜的电输运性质研究,发现LaBaCo2O5+δ薄膜的激活能Ea为0.32 e V,远小于同类体材料PrBaCo2O5+δ激活能(Ea=0.67 e V),说明将材料薄膜化以后,有利于降低材料的激活能;此外,LBCO薄膜阻-温曲线满足小极化子热激化跳跃理论,证明该材料的导电机制是小极化子电子电导。氧敏性质研究发现,在较低的温度356℃下,当测试气体从氢气切换到氧气时,薄膜电阻从3×105Ω迅速下降到4.5×102Ω(ΔR≈3.0×105Ω),响应时间为4.2 s,说明在较低温度下,LBCO薄膜对氧气具有较高的敏感度。同时,发现LBCO薄膜材料导电能力并不与氧气的浓度成正比。展开更多
文摘In this study, Bismuth doped Titanium dioxide thin films were deposited on glass substrates by a pulse laser deposition using laser. The effect of annealing temperature on the structural and electrical properties was investigated. X-ray diffraction pattern for pure and doped titanium dioxide films with different doping different ratio with Bi show that these films have amorphous structure oanvert to polycrystalline structure with annealing and doping and have a good identically with standard peaks for Anatase and Rutile phases. The orientation was at specific direction for Rutile. The crystalline of films increases by the increase of doping ratio. The crystalline increased with annealing temperature. Annealed films at different annealing temperatures have been studied. The results show that these films have two activation energies and by increasing the doping ratio, the activation energies and the conductivity increase. Both the annealing and composition effects on Hall constant, density of electron carders and Hall mobility are studied. Hall Effect measurements show that all films have n- type charge conductivity and the concentration increases while the mobility decreases with doping and annealing.
文摘Tin monosulphide(SnS) thin films capped by PVA have been successfully deposited on glass substrates for cost effective photovoltaic device applications by a simple and low-cost wet chemical process, chemical bath deposition(CBD) at different bath temperatures varying in the range, 50–80 °C. X–ray diffraction analysis showed that the deposited films were polycrystalline in nature, showing orthorhombic structure with an intense peak corresponding to(040) plane of SnS. These observations were further confirmed by Raman analysis. FTIR spectra showed the absorption bands which corresponds to PVA in addition to SnS.The scanning electron microscopy and atomic force microscopy studies revealed that the deposited SnS films were uniform and nanostructured with an average particle size of 4.9 to 7.6 nm. The optical investigations showed that the layers were highly absorbing with the optical absorption coefficient ~10~5 cm^(-1). A decrease in optical band gap from 1.92 to 1.55 eV with an increase of bath temperature was observed. The observed band gap values were higher than the bulk value of 1.3 eV, which might be due to quantum confinement effect. The optical band gap values were also used to calculate particle size and the results are discussed.
文摘采用高分子辅助沉积法制备了Si基La BaCo2O5+δ(LBCO)薄膜,主要研究了Si基LBCO薄膜的电输运性质及氧敏性质。通过对LBCO薄膜的电输运性质研究,发现LaBaCo2O5+δ薄膜的激活能Ea为0.32 e V,远小于同类体材料PrBaCo2O5+δ激活能(Ea=0.67 e V),说明将材料薄膜化以后,有利于降低材料的激活能;此外,LBCO薄膜阻-温曲线满足小极化子热激化跳跃理论,证明该材料的导电机制是小极化子电子电导。氧敏性质研究发现,在较低的温度356℃下,当测试气体从氢气切换到氧气时,薄膜电阻从3×105Ω迅速下降到4.5×102Ω(ΔR≈3.0×105Ω),响应时间为4.2 s,说明在较低温度下,LBCO薄膜对氧气具有较高的敏感度。同时,发现LBCO薄膜材料导电能力并不与氧气的浓度成正比。