Heterostructure photocatalysts with a built-in electric field have become one of the most promising strategies to enhance photogenerated electron-hole pair separation. However, close contact between the two active com...Heterostructure photocatalysts with a built-in electric field have become one of the most promising strategies to enhance photogenerated electron-hole pair separation. However, close contact between the two active components of heterogeneous photocatalysts remains a problem. Herein, the in-situ fabrication of an SnO2/SnS2 heterostructure photocatalyst was performed;the structure showed enhanced photocatalytic performance resulting from the tight-contact heterostructures. The results of photoelectrochemical measurements further verified that a tight-contact heterostructure improved the separation of photogenerated electron-hole pairs. The results of EIS Bode plots also demonstrated that such in-situ fabricated SnO2/SnS2 samples exhibited the longest carrier lifetime(41.6 μs) owing to the intimate interface of SnO2/SnS2 heterostructures.展开更多
Compound Zn2Sn0.8Ti0.2O4 was synthesized by a hydrothermal method in which SnCl4-5H2O,TiCl4,ZnCl2 and N2H4-H2O were used as reactants.The composite Zn2Sn0.8Ti0.2O4/C was then prepared through a carbothermic reduction ...Compound Zn2Sn0.8Ti0.2O4 was synthesized by a hydrothermal method in which SnCl4-5H2O,TiCl4,ZnCl2 and N2H4-H2O were used as reactants.The composite Zn2Sn0.8Ti0.2O4/C was then prepared through a carbothermic reduction process using the as-prepared Zn2Sn0.8Ti0.2O4 and glucose as reactants.The structure,morphology and electrochemical properties of the as-prepared products were investigated by XRD,XPS,TEM and electrochemical measurements.In addition,electrochemical Li insertion/extraction in composite Zn2Sn0.8Ti0.2O4/C were examined by ex situ XRD and SEM.The first discharge capacity of Zn2SnO4 is about 1670.8 mA-h/g,with a capacity retain of 342.7 mA-h/g in the 40th cycle at a constant current density of 100 mA/g in the voltage range of 0.05-3.0 V.Comparing with the Zn2SnO4,some improved electrochemical properties are obtained for Zn2Sn0.8Ti0.2O4,Zn2SnO4/C and Zn2Sn0.8Ti0.2O4/C.The composite Zn2Sn0.8Ti0.2O4/C shows the best electrochemical properties,and its first discharge capacity is about 1530.0 mA-h/g,with a capacity retain of 479.1 mA-h/g the 100th cycle.展开更多
A kind of solar thermochemical cycle based on methanothermal reduction of SnO2 is proposed for H2 and CO production. We find that the oxygen release capacity and thermodynamic driven force for methanothermal reduction...A kind of solar thermochemical cycle based on methanothermal reduction of SnO2 is proposed for H2 and CO production. We find that the oxygen release capacity and thermodynamic driven force for methanothermal reduction of SnO2 are large, and suggest CH4 :SnO2 = 2:1 as the feasible reduction condition for achieving high purities of syngas and avoiding vaporization of produced Sn. Subsequently, the amount of H2 and energetic upgrade factors under different oxidation conditions are compared, in which excess water vapor is found beneficial for hydrogen production and fuel energetic upgradation. Moreover, the effect of incom plete recovery of SnO2 on the subsequent cycle is underscored and explained. After accounting for factors such as isothermal operation and cycle stability, CH4 :SnO2 = 2:1 and H2O:Sn = 4:1 are suggested for highest solar-to-fuel efficiency of 46.1% at nonisothermal condition, where the reduction and oxidation temperature are 1400 and 600 K, respectively.展开更多
Preliminary study on concentration and separation of tin(Sn) from copper alloy dross by selective dissolution method was conducted. The tin in the copper alloy dross did not dissolve in an aqueous nitric acid solution...Preliminary study on concentration and separation of tin(Sn) from copper alloy dross by selective dissolution method was conducted. The tin in the copper alloy dross did not dissolve in an aqueous nitric acid solution which could allow separation of tin from the copper alloy dross. The tin as H2SnO3(metastannic acid) phase was precipitated in the solution with centrifuging process and transformed to tin dioxide(SnO2) after drying process. The dried sample was heat-treated at low temperature and its phase characteristics, surface morphology and chemical composition were investigated.展开更多
文摘Heterostructure photocatalysts with a built-in electric field have become one of the most promising strategies to enhance photogenerated electron-hole pair separation. However, close contact between the two active components of heterogeneous photocatalysts remains a problem. Herein, the in-situ fabrication of an SnO2/SnS2 heterostructure photocatalyst was performed;the structure showed enhanced photocatalytic performance resulting from the tight-contact heterostructures. The results of photoelectrochemical measurements further verified that a tight-contact heterostructure improved the separation of photogenerated electron-hole pairs. The results of EIS Bode plots also demonstrated that such in-situ fabricated SnO2/SnS2 samples exhibited the longest carrier lifetime(41.6 μs) owing to the intimate interface of SnO2/SnS2 heterostructures.
基金Project (51004028) supported by the National Natural Science Foundation of China
文摘Compound Zn2Sn0.8Ti0.2O4 was synthesized by a hydrothermal method in which SnCl4-5H2O,TiCl4,ZnCl2 and N2H4-H2O were used as reactants.The composite Zn2Sn0.8Ti0.2O4/C was then prepared through a carbothermic reduction process using the as-prepared Zn2Sn0.8Ti0.2O4 and glucose as reactants.The structure,morphology and electrochemical properties of the as-prepared products were investigated by XRD,XPS,TEM and electrochemical measurements.In addition,electrochemical Li insertion/extraction in composite Zn2Sn0.8Ti0.2O4/C were examined by ex situ XRD and SEM.The first discharge capacity of Zn2SnO4 is about 1670.8 mA-h/g,with a capacity retain of 342.7 mA-h/g in the 40th cycle at a constant current density of 100 mA/g in the voltage range of 0.05-3.0 V.Comparing with the Zn2SnO4,some improved electrochemical properties are obtained for Zn2Sn0.8Ti0.2O4,Zn2SnO4/C and Zn2Sn0.8Ti0.2O4/C.The composite Zn2Sn0.8Ti0.2O4/C shows the best electrochemical properties,and its first discharge capacity is about 1530.0 mA-h/g,with a capacity retain of 479.1 mA-h/g the 100th cycle.
基金supported by the National Key R&D Program of China (Grant no. 2018YFB1502005)the National Natural Science Foundation of China (Grant nos. 51476163 , 51806209 and 81801768)Institute of Electrical Engineering, Chinese Academy of Sciences (No.Y770111CSC)
文摘A kind of solar thermochemical cycle based on methanothermal reduction of SnO2 is proposed for H2 and CO production. We find that the oxygen release capacity and thermodynamic driven force for methanothermal reduction of SnO2 are large, and suggest CH4 :SnO2 = 2:1 as the feasible reduction condition for achieving high purities of syngas and avoiding vaporization of produced Sn. Subsequently, the amount of H2 and energetic upgrade factors under different oxidation conditions are compared, in which excess water vapor is found beneficial for hydrogen production and fuel energetic upgradation. Moreover, the effect of incom plete recovery of SnO2 on the subsequent cycle is underscored and explained. After accounting for factors such as isothermal operation and cycle stability, CH4 :SnO2 = 2:1 and H2O:Sn = 4:1 are suggested for highest solar-to-fuel efficiency of 46.1% at nonisothermal condition, where the reduction and oxidation temperature are 1400 and 600 K, respectively.
基金supported by the "Energy Efficiency & Resources" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 20125010100030-11-2-400)
文摘Preliminary study on concentration and separation of tin(Sn) from copper alloy dross by selective dissolution method was conducted. The tin in the copper alloy dross did not dissolve in an aqueous nitric acid solution which could allow separation of tin from the copper alloy dross. The tin as H2SnO3(metastannic acid) phase was precipitated in the solution with centrifuging process and transformed to tin dioxide(SnO2) after drying process. The dried sample was heat-treated at low temperature and its phase characteristics, surface morphology and chemical composition were investigated.