Owing to the ppb-level detection standard toward the toxic and harmful gas,the detection of trace gases has become an important subject in the field of indoor environment management.However,the traditional resistive g...Owing to the ppb-level detection standard toward the toxic and harmful gas,the detection of trace gases has become an important subject in the field of indoor environment management.However,the traditional resistive gas sensors hardly meet the requirement due to the weak signal generated by trace gas molecules that are difficult to capture.Herein,a visible-light-assisted Pd/TiO_(2)gas sensor is proposed to endow the effective detection of trace formaldehyde(HCHO)gas without heating temperature.Benefiting from the enhanced photocatalytic properties of TiO_(2)by Pd decoration,the visible-light-assisted Pd/TiO_(2)gas sensor can detect the HCHO gas as low as80×10^(–9)at room temperature.The successful preparation of nanoscale TiO_(2)sensing layer is facilitated by the ultrathin carbon nanotube interdigital electrode in the gas sensor,which avoids the discontinuity of the sensing layer caused by the excessive thickness of the traditional metal electrode.In addition,the whole preparation process of the Pd/TiO_(2)gas sensor with carbon nanotube electrodes is compatible with mainstream CMOS fabrication technology,which is expected to realize the batch fabrication and micro-integrated application of gas sensors.It is expected that our work can provide a new strategy for the batch preparation of high-performance trace HCHO gas sensors and their future applications in portable electronic devices such as smartphones.展开更多
Recently,a novel 2-electron oxygen reduction reaction(ORR)based electro-oxidation(EO)system was developed,which utilizes a H_(2)O_(2)generation cathode instead of H_(2)evolution cathode.A Ti-based Ni-Sb co-doped SnO_(...Recently,a novel 2-electron oxygen reduction reaction(ORR)based electro-oxidation(EO)system was developed,which utilizes a H_(2)O_(2)generation cathode instead of H_(2)evolution cathode.A Ti-based Ni-Sb co-doped SnO_(2)(Ti/NATO)anode was selected for efficient degradation of refractory organics and O_(3)production.The synergistic reaction of O3/H_(2)O_(2)further accelerated the generation of hydroxyl radicals(·OH)in the ORR-EO system.However,the catalytic activity and long-term effectiveness of the Ti/NATO anode limited the large-scale application of the ORR-EO process.In this study,a blue TiO_(2)nanotube array(blue-TiO_(2)-NTA)inter-layer was introduced into the fabrication process between the Ti substrate and NATO catalyst layer.Compared to the Ti/NATO anode,the Ti/blue-TiO_(2)-NTA/NATO anode achieved higher efficiency of organic removal and O_(3)generation.Additionally,the accelerated lifetime of the Ti/blue-TiO_(2)-NTA/NATO anode was increased by 7 times compared to the Ti/NATO anode.When combined with CNTs-C/PTFE air cathode in ORR-EO system,all anodic oxidation and O_(3)/H_(2)O_(2)processes achieved higher•OH production.Over 92%of TOC in leachate bio-effluent was effectively eliminated with a relatively low energy cost of 45 kWh/t.展开更多
Three-dimensional(3D) thin-film electrodes are promising solution to the volume change of active materials in lithium-ion batteries.As a conductive current collector,the 3D TiO_(2) nanotube array networks(TNAs) have a...Three-dimensional(3D) thin-film electrodes are promising solution to the volume change of active materials in lithium-ion batteries.As a conductive current collector,the 3D TiO_(2) nanotube array networks(TNAs) have a one-dimensional stable electronic conductive path and increase the adhesion between the current collector and raw material,thereby improving the cycle stability of active materials.In this study,a novel 3D-TNAs@Sb_(2)S_(3) anode was fabricated by directly depositing natural stibnite onto3D TNAs.The adhesion of Sb_(2)S_(3) particles to the substrate was enhanced due to the large surface area provided by 3D-TNAs.Moreover,the porous layered structure composed of Sb_(2)S_(3) nanoparticles relieved the stress generated during lithiation and adapted to the volume change of Sb_(2)S_(3) during cycling.Therefore,the resulting composite anode exhibits high cycle and rate performance,reaching0.36 mAh·cm^(-2) after 80 cycles at the galvanostatic rate of1 mA·cm^(-2),with high coulombic efficiency of 98%.展开更多
In this work,TiO_(2)nanotube arrays(NTAs)sensitized with MoS_(2)microspheres(MoS_(2)/TiO_(2)nanocomposites)were prepared on a flat Ti substrate via two-step anodization and hydrothermal method sequentially.TiO_(2)NTAs...In this work,TiO_(2)nanotube arrays(NTAs)sensitized with MoS_(2)microspheres(MoS_(2)/TiO_(2)nanocomposites)were prepared on a flat Ti substrate via two-step anodization and hydrothermal method sequentially.TiO_(2)NTAs were composed of many orderly nanotubes,whose large specific surface area was favorable for light absorption and MoS_(2)microsphere adhesion.The MoS_(2)microsphere as a narrow band gap semiconductor extended the TiO_(2)NTAs’absorption band edge to the visible region.The 2D structure of MoS_(2)microspheres and the construction of heterojunction electronic field at the interface of MoS_(2)microspheres and TiO_(2)NTAs promoted the separation of photoinduced carriers.The MoS_(2)/TiO_(2)nanocomposites could provide higher photoelectrochemical cathodic protection for 304 stainless steel(304 SS)under visible light than pristine TiO_(2)NTAs.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.62071410 and 62101477)Hunan Provincial Natural Science Foundation(No.2021JJ40542)the Postgraduate Scientific Research Innovation Project of Hunan Province(No.CX20210627)。
文摘Owing to the ppb-level detection standard toward the toxic and harmful gas,the detection of trace gases has become an important subject in the field of indoor environment management.However,the traditional resistive gas sensors hardly meet the requirement due to the weak signal generated by trace gas molecules that are difficult to capture.Herein,a visible-light-assisted Pd/TiO_(2)gas sensor is proposed to endow the effective detection of trace formaldehyde(HCHO)gas without heating temperature.Benefiting from the enhanced photocatalytic properties of TiO_(2)by Pd decoration,the visible-light-assisted Pd/TiO_(2)gas sensor can detect the HCHO gas as low as80×10^(–9)at room temperature.The successful preparation of nanoscale TiO_(2)sensing layer is facilitated by the ultrathin carbon nanotube interdigital electrode in the gas sensor,which avoids the discontinuity of the sensing layer caused by the excessive thickness of the traditional metal electrode.In addition,the whole preparation process of the Pd/TiO_(2)gas sensor with carbon nanotube electrodes is compatible with mainstream CMOS fabrication technology,which is expected to realize the batch fabrication and micro-integrated application of gas sensors.It is expected that our work can provide a new strategy for the batch preparation of high-performance trace HCHO gas sensors and their future applications in portable electronic devices such as smartphones.
基金supported by grants from the National Natural Science Foundation of China(No.52070008).
文摘Recently,a novel 2-electron oxygen reduction reaction(ORR)based electro-oxidation(EO)system was developed,which utilizes a H_(2)O_(2)generation cathode instead of H_(2)evolution cathode.A Ti-based Ni-Sb co-doped SnO_(2)(Ti/NATO)anode was selected for efficient degradation of refractory organics and O_(3)production.The synergistic reaction of O3/H_(2)O_(2)further accelerated the generation of hydroxyl radicals(·OH)in the ORR-EO system.However,the catalytic activity and long-term effectiveness of the Ti/NATO anode limited the large-scale application of the ORR-EO process.In this study,a blue TiO_(2)nanotube array(blue-TiO_(2)-NTA)inter-layer was introduced into the fabrication process between the Ti substrate and NATO catalyst layer.Compared to the Ti/NATO anode,the Ti/blue-TiO_(2)-NTA/NATO anode achieved higher efficiency of organic removal and O_(3)generation.Additionally,the accelerated lifetime of the Ti/blue-TiO_(2)-NTA/NATO anode was increased by 7 times compared to the Ti/NATO anode.When combined with CNTs-C/PTFE air cathode in ORR-EO system,all anodic oxidation and O_(3)/H_(2)O_(2)processes achieved higher•OH production.Over 92%of TOC in leachate bio-effluent was effectively eliminated with a relatively low energy cost of 45 kWh/t.
基金financially supported by the National Natural Science Foundation of China(Nos.51974222 and 51974191)the Natural Science Basic Research Plan in Shaanxi Province(No.2019JQ-764)the Project from Shaanxi Provincial Education Department,China(No.18JK0474)。
文摘Three-dimensional(3D) thin-film electrodes are promising solution to the volume change of active materials in lithium-ion batteries.As a conductive current collector,the 3D TiO_(2) nanotube array networks(TNAs) have a one-dimensional stable electronic conductive path and increase the adhesion between the current collector and raw material,thereby improving the cycle stability of active materials.In this study,a novel 3D-TNAs@Sb_(2)S_(3) anode was fabricated by directly depositing natural stibnite onto3D TNAs.The adhesion of Sb_(2)S_(3) particles to the substrate was enhanced due to the large surface area provided by 3D-TNAs.Moreover,the porous layered structure composed of Sb_(2)S_(3) nanoparticles relieved the stress generated during lithiation and adapted to the volume change of Sb_(2)S_(3) during cycling.Therefore,the resulting composite anode exhibits high cycle and rate performance,reaching0.36 mAh·cm^(-2) after 80 cycles at the galvanostatic rate of1 mA·cm^(-2),with high coulombic efficiency of 98%.
基金financially supported by the National Natural Science Foundation of China(No.41827805)Chinese Academy of Engineering(No.2019-XZ-21)。
文摘In this work,TiO_(2)nanotube arrays(NTAs)sensitized with MoS_(2)microspheres(MoS_(2)/TiO_(2)nanocomposites)were prepared on a flat Ti substrate via two-step anodization and hydrothermal method sequentially.TiO_(2)NTAs were composed of many orderly nanotubes,whose large specific surface area was favorable for light absorption and MoS_(2)microsphere adhesion.The MoS_(2)microsphere as a narrow band gap semiconductor extended the TiO_(2)NTAs’absorption band edge to the visible region.The 2D structure of MoS_(2)microspheres and the construction of heterojunction electronic field at the interface of MoS_(2)microspheres and TiO_(2)NTAs promoted the separation of photoinduced carriers.The MoS_(2)/TiO_(2)nanocomposites could provide higher photoelectrochemical cathodic protection for 304 stainless steel(304 SS)under visible light than pristine TiO_(2)NTAs.