Crystallization of intermetallic compound layer between Cu and SnZn alloy under uniform magnetic field was studied. The effect of magnetic field density on the growth behavior of the intermetallic layer such as micros...Crystallization of intermetallic compound layer between Cu and SnZn alloy under uniform magnetic field was studied. The effect of magnetic field density on the growth behavior of the intermetallic layer such as microstructure, crystal orientation and composition was analyzed by scanning electron microscopy, X-ray diffraction and electron-probe microanalysis, respectively. Compared with the intermetallic layer without magnetic field, 0.1 T of magnetic flux density decreases the layer thickness. However, further increasing magnetic flux density promotes the layer growth. Application of magnetic field also changes the crystal orientation of intermetallic layer, but has no obvious influence on the layer composition. This phenomenon can be attributed to the role of thermo-electromagnetic convection and Lorentz force on the Cu dissolution as well as the accumulation of Cu solute at the interface front.展开更多
基金Project (501101024) supported by the National Natural Science Foundation of ChinaProject supported by the Fundamental Research Funds for the Central Universities, China
文摘Crystallization of intermetallic compound layer between Cu and SnZn alloy under uniform magnetic field was studied. The effect of magnetic field density on the growth behavior of the intermetallic layer such as microstructure, crystal orientation and composition was analyzed by scanning electron microscopy, X-ray diffraction and electron-probe microanalysis, respectively. Compared with the intermetallic layer without magnetic field, 0.1 T of magnetic flux density decreases the layer thickness. However, further increasing magnetic flux density promotes the layer growth. Application of magnetic field also changes the crystal orientation of intermetallic layer, but has no obvious influence on the layer composition. This phenomenon can be attributed to the role of thermo-electromagnetic convection and Lorentz force on the Cu dissolution as well as the accumulation of Cu solute at the interface front.