旋流喷嘴作为造雪机关键部件,其雾化效果直接影响成雪效果。为进一步探索旋流喷嘴雾化特性,基于VOF to DPM模型,建立旋流喷嘴雾化的数值模型,对旋流喷嘴进行三维数值模拟。研究不同入口压力对液滴粒径、液滴速度等雾化特性的影响,并通...旋流喷嘴作为造雪机关键部件,其雾化效果直接影响成雪效果。为进一步探索旋流喷嘴雾化特性,基于VOF to DPM模型,建立旋流喷嘴雾化的数值模型,对旋流喷嘴进行三维数值模拟。研究不同入口压力对液滴粒径、液滴速度等雾化特性的影响,并通过实验验证了模型的准确性。结果表明,喷雾充分发展后,索特平均粒径随入口压力的增大而减小,入口压力增大,增强了液体和空气之间的气动不稳定性,促进了液体的破碎分解,缩短了液体所需破碎时间;液膜和液滴速度都随着入口压力的增大而增大,当入口压力由0.6 MPa增大到1.4 MPa时,出口液膜和液滴速度分别增加58.8%和52.2%;在破碎过程中,动能转化为表面能,会使液体速度发生削减。展开更多
文摘旋流喷嘴作为造雪机关键部件,其雾化效果直接影响成雪效果。为进一步探索旋流喷嘴雾化特性,基于VOF to DPM模型,建立旋流喷嘴雾化的数值模型,对旋流喷嘴进行三维数值模拟。研究不同入口压力对液滴粒径、液滴速度等雾化特性的影响,并通过实验验证了模型的准确性。结果表明,喷雾充分发展后,索特平均粒径随入口压力的增大而减小,入口压力增大,增强了液体和空气之间的气动不稳定性,促进了液体的破碎分解,缩短了液体所需破碎时间;液膜和液滴速度都随着入口压力的增大而增大,当入口压力由0.6 MPa增大到1.4 MPa时,出口液膜和液滴速度分别增加58.8%和52.2%;在破碎过程中,动能转化为表面能,会使液体速度发生削减。