In order to apply satellite data to guiding navigation in the Arctic more effectively,the sea ice concentrations(SIC)derived from passive microwave(PM)products were compared with ship-based visual observations(OBS)col...In order to apply satellite data to guiding navigation in the Arctic more effectively,the sea ice concentrations(SIC)derived from passive microwave(PM)products were compared with ship-based visual observations(OBS)collected during the Chinese National Arctic Research Expeditions(CHINARE).A total of 3667 observations were collected in the Arctic summers of 2010,2012,2014,2016,and 2018.PM SIC were derived from the NASA-Team(NT),Bootstrap(BT)and Climate Data Record(CDR)algorithms based on the SSMIS sensor,as well as the BT,enhanced NASA-Team(NT2)and ARTIST Sea Ice(ASI)algorithms based on AMSR-E/AMSR-2 sensors.The daily arithmetic average of PM SIC values and the daily weighted average of OBS SIC values were used for the comparisons.The correlation coefficients(CC),biases and root mean square deviations(RMSD)between PM SIC and OBS SIC were compared in terms of the overall trend,and under mild/normal/severe ice conditions.Using the OBS data,the influences of floe size and ice thickness on the SIC retrieval of different PM products were evaluated by calculating the daily weighted average of floe size code and ice thickness.Our results show that CC values range from 0.89(AMSR-E/AMSR-2 NT2)to 0.95(SSMIS NT),biases range from−3.96%(SSMIS NT)to 12.05%(AMSR-E/AMSR-2 NT2),and RMSD values range from 10.81%(SSMIS NT)to 20.15%(AMSR-E/AMSR-2 NT2).Floe size has a significant influence on the SIC retrievals of the PM products,and most of the PM products tend to underestimate SIC under smaller floe size conditions and overestimate SIC under larger floe size conditions.Ice thickness thicker than 30 cm does not have a significant influence on the SIC retrieval of PM products.Overall,the best(worst)agreement occurs between OBS SIC and SSMIS NT(AMSR-E/AMSR-2 NT2)SIC in the Arctic summer.展开更多
Extrapolating from the propagation theories of electromagnetic waves in a layered medium, a three-layer medium model is deduced in this paper by using microwave radiometric remote sensing technology which is suitable ...Extrapolating from the propagation theories of electromagnetic waves in a layered medium, a three-layer medium model is deduced in this paper by using microwave radiometric remote sensing technology which is suitable to first-year sea ice condition of the northern part of China seas. Comparison with in situ data indicates that for microwave wavelength of 10 cm, the coherent model gives a quite good fit result for the thickness of sea ice less than 20 cm, and the incoherent model also works well for thickness within 20 to 40 cm. Based on three theoretical models, the inversion soft ware from microwave remote sensing data for calculating the thickness of sea ice can be set up. The relative complex dielectrical constants of different types of sea ice in the Liaodong Gulf calculated by using these theoretical models and measurement data are given in this paper. The extent of their values is (0. 5-4. 0)-j(0. 07~0. 19).展开更多
Lake ice phenology(LIP)is an essential indicator of climate change and helps with understanding of the regional characteristics of climate change impacts.Ground observation records and remote sensing retrieval product...Lake ice phenology(LIP)is an essential indicator of climate change and helps with understanding of the regional characteristics of climate change impacts.Ground observation records and remote sensing retrieval products of lake ice phenology are abundant for Europe,North America,and the Tibetan Plateau,but there is a lack of data for inner Eurasia.In this work,enhanced-resolution passive microwave satellite data(PMW)were used to investigate the Northern Hemisphere Lake Ice Phenology(PMW LIP).The Freeze Onset(FO),Complete Ice Cover(CIC),Melt Onset(MO),and Complete Ice Free(CIF)dates were derived for 753 lakes,including 409 lakes for which ice phenology retrievals were available for the period 1978 to 2020 and 344 lakes for which these were available for 2002 to 2020.Verification of the PMW LIP using ground records gave correlation coefficients of 0.93 and 0.84 for CIC and CIF,respectively,and the corresponding values of the RMSE were 11.84 and 10.07 days.The lake ice phenology in this dataset was significantly correlated(P<0.001)with that obtained from Moderate Resolution Imaging Spectroradiometer(MODIS)data-the average correlation coefficient was 0.90 and the average RMSE was 7.87 days.The minimum RMSE was 4.39 days for CIF.The PMW is not affected by the weather or the amount of sunlight and thus provides more reliable data about the freezing and thawing process information than MODIS observations.The PMW LIP dataset pro-vides the basic freeze-thaw data that is required for research into lake ice and the impact of climate change in the cold regions of the Northern Hemisphere.The dataset is available at http://www.doi.org/10.11922/sciencedb.j00076.00081.展开更多
Accurate quantitative global scale snow water equivalent information is crucial for meteorology, hydrology, water cycle and global change studies, and is of great importance for snow melt-runoff forecast, water resour...Accurate quantitative global scale snow water equivalent information is crucial for meteorology, hydrology, water cycle and global change studies, and is of great importance for snow melt-runoff forecast, water resources management and flood control. With land surface process model and snow process model, the snow water equivalent can be simulated with certain accuracy, with the forcing data as input. However, the snow water equivalent simulated using the snow process models has large uncertainties spatially and temporally, and it may be far from the needs of practical applications. Thus, the large scale snow water equivalent information is mainly from remote sensing. Beginning with the launch of Nimbus-7 satellite, the research on microwave snow water equivalent remote sensing has developed for more than 30 years, researchers have made progress in many aspects, including the electromagnetic scattering and emission modeling, ground and airborne experiments, and inversion algorithms for future global high resolution snow water equivalent remote sensing program. In this paper, the research and progress in the aspects of electromagnetic scattering/emission modeling over snow covered terrain and snow water equivalent inversion algorithm will be summarized.展开更多
Snow cover plays an important role in the hydrological cycle and water management in Kazakhstan. However, traditional observations do not meet current needs. In this study, a snow depth retrieval equation was develope...Snow cover plays an important role in the hydrological cycle and water management in Kazakhstan. However, traditional observations do not meet current needs. In this study, a snow depth retrieval equation was developed based on passive microwave remote sensing data. The average snow depth in winter (ASDW), snow cover duration (SCD), monthly maximum snow depth (MMSD), and annual average snow depth (AASD) were derived for each year to monitor the spatial and temporal snow distributions. The SCD exhibited significant spatial variations from 30 to 250 days. The longest SCD was found in the mountainous area in eastern Kazakhstan, reaching values between 200 and 250 days in 2005. The AASD increased from the south to the north and maintained latitudinal zonality. The MMSD in most areas ranged from 20 to 30 cm. The ASDW values ranged regularity of latitudinal zonality from 15 to 20 cm in the eastern region and were characterized by spatial The ASDW in the mountainous area often exceeded 20 cm.展开更多
Highly accurate observations at various scales on the land surface are urgently needed for the studies of many areas,such as hydrology,meteorology,and agriculture.With the rapid development of remote sensing technique...Highly accurate observations at various scales on the land surface are urgently needed for the studies of many areas,such as hydrology,meteorology,and agriculture.With the rapid development of remote sensing techniques,remote sensing has had the capacity of monitoring many factors of the Earth's land surface.Especially,the space-borne microwave remote sensing systems have been widely used in the quantitative monitoring of global snow,soil moisture,and vegetation parameters with their all-weather,all-time observation capabilities and their sensitivities to the characteristics of land surface factors.Based on the electromagnetic theories and microwave radiative transfer equations,researchers have achieved great successes in the microwave remote sensing studies for different sensors in recent years.This article has systematically reviewed the progresses on five research areas including microwave theoretical modeling,microwave inversion on soil moisture,snow,vegetation and land surface temperatures.Through the further enrichment of remote sensing datasets and the development of remote sensing theories and inversion techniques,remote sensing including microwave remote sensing will play a more important role in the studies and applications of the Earth systems.展开更多
Current snow depth datasets demonstrate large discrepancies in the spatial pattern in Eurasia,and the lagging updates of datasets do not meet the operational requirements of the meteorological service department.This ...Current snow depth datasets demonstrate large discrepancies in the spatial pattern in Eurasia,and the lagging updates of datasets do not meet the operational requirements of the meteorological service department.This study developed a dynamic retrieval method for daily snow depth over Eurasia based on cross-sensor calibrated microwave brightness temperatures to enhance retrieval accuracy and meet the requirements of operational work.These brightness temperatures were detected by microwave radiometer imager carried on the FengYun 3(FY-3)satellite and the special sensor microwave imager/sounder carried on the USA Defense Meteorological Satellite Program series satellites,which use the fewest sensors to provide the longest data and consequently introduce minimal errors during inter-sensor calibration.Firstly,inter-sensor calibration was conducted amongst brightness temperatures collected by the three sensors.A spatiotemporal dynamic relationship between snow depth and microwave brightness temperature gradient was then established,overcoming the large uncertainties induced by varying snow characteristics.This relationship can be utilised in FY-3 satellite data for operational service to obtain real-time snow depth.The generated daily snow depth dataset from 1988 to 2021 presents similar spatial patterns of snow depth to those observed in situ.Against in situ snow depth,the overall bias and root mean square error are−2.04 and 6.49 cm,respectively,facilitating considerable improvements in accuracy compared with the Advanced Microwave Scanning Radiometer 2 snow depth product,which adopts the static algorithm.Further analysis shows an overall decreasing trend from 1988 to 2021 for annual and monthly mean snow depths,demonstrating a noticeable reduction since around 2000.The reduction in monthly mean snow depth started earlier in shallow snow months than in deep snow months.展开更多
Passive microwave remote sensing datasets are widely used to observe surface freeze/thaw(F/T)states.However,current algorithms are highly affected by snow cover and complex land cover types,compromising their performa...Passive microwave remote sensing datasets are widely used to observe surface freeze/thaw(F/T)states.However,current algorithms are highly affected by snow cover and complex land cover types,compromising their performance.Therefore,this study proposes an improved algorithm for daytime detection of diurnal F/T states by using Advanced Microwave Scanning Radiometer 2 data.In the daytime F/T discrimination algorithm,a microwave spectral gradient index is applied to divide the surface into snow-covered and snow-free areas.In the snow-free area,the surface temperature index is optimised to improve the accuracy of the standard deviation method(SDM)in evaluating the accuracy of the F/T state.For the nighttime dataset,the microwave standard deviation index difference values between day and night are used to detect the F/T states based on the daytime results.The accuracy of the improved algorithm reaches 88.6%and 84.5%in the daytime and at nighttime,respectively.Compared with the SDM,the accuracy is improved by 10.2%in the daytime and 5.4%at nighttime.The results demonstrate that the proposed model is able to effectively distinguish the F/T states of snow-covered surfaces.Optimising the surface temperature index can significantly improve the accuracy of the SDM.The results reveal that the proposed surface F/T detection algorithm can be applied to regions with complex land cover types.展开更多
基金The National Major Research High Resolution Sea Ice Model Development Program of China under contract No.2018YFA0605903the National Natural Science Foundation of China under contract Nos 51639003,41876213 and 41906198+1 种基金the Hightech Ship Research Project of China under contract No.350631009the National Postdoctoral Program for Innovative Talent of China under contract No.BX20190051.
文摘In order to apply satellite data to guiding navigation in the Arctic more effectively,the sea ice concentrations(SIC)derived from passive microwave(PM)products were compared with ship-based visual observations(OBS)collected during the Chinese National Arctic Research Expeditions(CHINARE).A total of 3667 observations were collected in the Arctic summers of 2010,2012,2014,2016,and 2018.PM SIC were derived from the NASA-Team(NT),Bootstrap(BT)and Climate Data Record(CDR)algorithms based on the SSMIS sensor,as well as the BT,enhanced NASA-Team(NT2)and ARTIST Sea Ice(ASI)algorithms based on AMSR-E/AMSR-2 sensors.The daily arithmetic average of PM SIC values and the daily weighted average of OBS SIC values were used for the comparisons.The correlation coefficients(CC),biases and root mean square deviations(RMSD)between PM SIC and OBS SIC were compared in terms of the overall trend,and under mild/normal/severe ice conditions.Using the OBS data,the influences of floe size and ice thickness on the SIC retrieval of different PM products were evaluated by calculating the daily weighted average of floe size code and ice thickness.Our results show that CC values range from 0.89(AMSR-E/AMSR-2 NT2)to 0.95(SSMIS NT),biases range from−3.96%(SSMIS NT)to 12.05%(AMSR-E/AMSR-2 NT2),and RMSD values range from 10.81%(SSMIS NT)to 20.15%(AMSR-E/AMSR-2 NT2).Floe size has a significant influence on the SIC retrievals of the PM products,and most of the PM products tend to underestimate SIC under smaller floe size conditions and overestimate SIC under larger floe size conditions.Ice thickness thicker than 30 cm does not have a significant influence on the SIC retrieval of PM products.Overall,the best(worst)agreement occurs between OBS SIC and SSMIS NT(AMSR-E/AMSR-2 NT2)SIC in the Arctic summer.
基金The project supported by National Natural Science Fundation of China
文摘Extrapolating from the propagation theories of electromagnetic waves in a layered medium, a three-layer medium model is deduced in this paper by using microwave radiometric remote sensing technology which is suitable to first-year sea ice condition of the northern part of China seas. Comparison with in situ data indicates that for microwave wavelength of 10 cm, the coherent model gives a quite good fit result for the thickness of sea ice less than 20 cm, and the incoherent model also works well for thickness within 20 to 40 cm. Based on three theoretical models, the inversion soft ware from microwave remote sensing data for calculating the thickness of sea ice can be set up. The relative complex dielectrical constants of different types of sea ice in the Liaodong Gulf calculated by using these theoretical models and measurement data are given in this paper. The extent of their values is (0. 5-4. 0)-j(0. 07~0. 19).
基金supported by the the Multi-Parameters Arctic Environmental Observations and Information Services Project(MARIS)funded by Ministry of Science and Technology(MOST)[grant number 2017YFE0111700]and Strategic Priority Research Program of the Chinese Academy of Sciences[grant numbers XDA19070201 and XDA19070102].
文摘Lake ice phenology(LIP)is an essential indicator of climate change and helps with understanding of the regional characteristics of climate change impacts.Ground observation records and remote sensing retrieval products of lake ice phenology are abundant for Europe,North America,and the Tibetan Plateau,but there is a lack of data for inner Eurasia.In this work,enhanced-resolution passive microwave satellite data(PMW)were used to investigate the Northern Hemisphere Lake Ice Phenology(PMW LIP).The Freeze Onset(FO),Complete Ice Cover(CIC),Melt Onset(MO),and Complete Ice Free(CIF)dates were derived for 753 lakes,including 409 lakes for which ice phenology retrievals were available for the period 1978 to 2020 and 344 lakes for which these were available for 2002 to 2020.Verification of the PMW LIP using ground records gave correlation coefficients of 0.93 and 0.84 for CIC and CIF,respectively,and the corresponding values of the RMSE were 11.84 and 10.07 days.The lake ice phenology in this dataset was significantly correlated(P<0.001)with that obtained from Moderate Resolution Imaging Spectroradiometer(MODIS)data-the average correlation coefficient was 0.90 and the average RMSE was 7.87 days.The minimum RMSE was 4.39 days for CIF.The PMW is not affected by the weather or the amount of sunlight and thus provides more reliable data about the freezing and thawing process information than MODIS observations.The PMW LIP dataset pro-vides the basic freeze-thaw data that is required for research into lake ice and the impact of climate change in the cold regions of the Northern Hemisphere.The dataset is available at http://www.doi.org/10.11922/sciencedb.j00076.00081.
基金funded by the Strategic Priority Research Program for Space Sciences(Grant No.XDA04061200)of the Chinese Academy of SciencesNational Basic Research Program of China(Grant No.2015CB953701)
文摘Accurate quantitative global scale snow water equivalent information is crucial for meteorology, hydrology, water cycle and global change studies, and is of great importance for snow melt-runoff forecast, water resources management and flood control. With land surface process model and snow process model, the snow water equivalent can be simulated with certain accuracy, with the forcing data as input. However, the snow water equivalent simulated using the snow process models has large uncertainties spatially and temporally, and it may be far from the needs of practical applications. Thus, the large scale snow water equivalent information is mainly from remote sensing. Beginning with the launch of Nimbus-7 satellite, the research on microwave snow water equivalent remote sensing has developed for more than 30 years, researchers have made progress in many aspects, including the electromagnetic scattering and emission modeling, ground and airborne experiments, and inversion algorithms for future global high resolution snow water equivalent remote sensing program. In this paper, the research and progress in the aspects of electromagnetic scattering/emission modeling over snow covered terrain and snow water equivalent inversion algorithm will be summarized.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2013CBA01802)National Natural Science Foundation of China(41401414 and 41271356)+2 种基金Open Fund from the State Key Laboratory of Cryosphere Science(SKLCS-OP-2013-03)British Council Researcher Links and Royal Academy of Engineers Grants awarded under the Newton-AlFarabi Partnership ProgramTarget Program(0115RK03041)from the Ministry of Education and Science of the Republic of Kazakhstan
文摘Snow cover plays an important role in the hydrological cycle and water management in Kazakhstan. However, traditional observations do not meet current needs. In this study, a snow depth retrieval equation was developed based on passive microwave remote sensing data. The average snow depth in winter (ASDW), snow cover duration (SCD), monthly maximum snow depth (MMSD), and annual average snow depth (AASD) were derived for each year to monitor the spatial and temporal snow distributions. The SCD exhibited significant spatial variations from 30 to 250 days. The longest SCD was found in the mountainous area in eastern Kazakhstan, reaching values between 200 and 250 days in 2005. The AASD increased from the south to the north and maintained latitudinal zonality. The MMSD in most areas ranged from 20 to 30 cm. The ASDW values ranged regularity of latitudinal zonality from 15 to 20 cm in the eastern region and were characterized by spatial The ASDW in the mountainous area often exceeded 20 cm.
基金supported by National Natural Science Foundation of China(Grant Nos. 40930530 and 40901180)
文摘Highly accurate observations at various scales on the land surface are urgently needed for the studies of many areas,such as hydrology,meteorology,and agriculture.With the rapid development of remote sensing techniques,remote sensing has had the capacity of monitoring many factors of the Earth's land surface.Especially,the space-borne microwave remote sensing systems have been widely used in the quantitative monitoring of global snow,soil moisture,and vegetation parameters with their all-weather,all-time observation capabilities and their sensitivities to the characteristics of land surface factors.Based on the electromagnetic theories and microwave radiative transfer equations,researchers have achieved great successes in the microwave remote sensing studies for different sensors in recent years.This article has systematically reviewed the progresses on five research areas including microwave theoretical modeling,microwave inversion on soil moisture,snow,vegetation and land surface temperatures.Through the further enrichment of remote sensing datasets and the development of remote sensing theories and inversion techniques,remote sensing including microwave remote sensing will play a more important role in the studies and applications of the Earth systems.
基金funded by the National Natural Science Foundation of China(42125604 and 42171143)Innovative Development Project of China Meteorological Administration(CXFZ 2022J039)and CAS Light of West China Program.The National Oceanic and Atmospheric Administration,USA,provided in situ snow depth data in the Eurasian continent except China and passive microwave brightness temperature data on the DMSP series of satellites.China Meteorological Administration provided FengYun satellite data and in situ snow depth in China,and NASA provided AMSR2 brightness temperature and sea ice concentration data.
文摘Current snow depth datasets demonstrate large discrepancies in the spatial pattern in Eurasia,and the lagging updates of datasets do not meet the operational requirements of the meteorological service department.This study developed a dynamic retrieval method for daily snow depth over Eurasia based on cross-sensor calibrated microwave brightness temperatures to enhance retrieval accuracy and meet the requirements of operational work.These brightness temperatures were detected by microwave radiometer imager carried on the FengYun 3(FY-3)satellite and the special sensor microwave imager/sounder carried on the USA Defense Meteorological Satellite Program series satellites,which use the fewest sensors to provide the longest data and consequently introduce minimal errors during inter-sensor calibration.Firstly,inter-sensor calibration was conducted amongst brightness temperatures collected by the three sensors.A spatiotemporal dynamic relationship between snow depth and microwave brightness temperature gradient was then established,overcoming the large uncertainties induced by varying snow characteristics.This relationship can be utilised in FY-3 satellite data for operational service to obtain real-time snow depth.The generated daily snow depth dataset from 1988 to 2021 presents similar spatial patterns of snow depth to those observed in situ.Against in situ snow depth,the overall bias and root mean square error are−2.04 and 6.49 cm,respectively,facilitating considerable improvements in accuracy compared with the Advanced Microwave Scanning Radiometer 2 snow depth product,which adopts the static algorithm.Further analysis shows an overall decreasing trend from 1988 to 2021 for annual and monthly mean snow depths,demonstrating a noticeable reduction since around 2000.The reduction in monthly mean snow depth started earlier in shallow snow months than in deep snow months.
基金the National Natural Science Foundation of China(41971151 and 41901072)the Key Joint Program of the National Natural Science Foundation of China and Heilongjiang Province for Regional Development(U20A2082)+1 种基金the Natural Science Foundation of Heilongjiang Province of China(TD2019D002)the Harbin Normal University(HSDBSCX2021-09).
文摘Passive microwave remote sensing datasets are widely used to observe surface freeze/thaw(F/T)states.However,current algorithms are highly affected by snow cover and complex land cover types,compromising their performance.Therefore,this study proposes an improved algorithm for daytime detection of diurnal F/T states by using Advanced Microwave Scanning Radiometer 2 data.In the daytime F/T discrimination algorithm,a microwave spectral gradient index is applied to divide the surface into snow-covered and snow-free areas.In the snow-free area,the surface temperature index is optimised to improve the accuracy of the standard deviation method(SDM)in evaluating the accuracy of the F/T state.For the nighttime dataset,the microwave standard deviation index difference values between day and night are used to detect the F/T states based on the daytime results.The accuracy of the improved algorithm reaches 88.6%and 84.5%in the daytime and at nighttime,respectively.Compared with the SDM,the accuracy is improved by 10.2%in the daytime and 5.4%at nighttime.The results demonstrate that the proposed model is able to effectively distinguish the F/T states of snow-covered surfaces.Optimising the surface temperature index can significantly improve the accuracy of the SDM.The results reveal that the proposed surface F/T detection algorithm can be applied to regions with complex land cover types.