Tungsten(W)accumulation in the core,depending on W generation and transport in the edge region,is a severe issue in fusion reactors.Compared to standard divertors(SDs),snowflake divertors(SFDs)can effectively suppress...Tungsten(W)accumulation in the core,depending on W generation and transport in the edge region,is a severe issue in fusion reactors.Compared to standard divertors(SDs),snowflake divertors(SFDs)can effectively suppress the heat flux,while the impact of magnetic configurations on W core accumulation remains unclear.In this study,the kinetic code DIVIMP combined with the SOLPS-ITER code is applied to investigate the effects of divertor magnetic configurations(SD versus SFD)on W accumulation during neon injection in HL-3.It is found that the W concentration in the core of the SFD is significantly higher than that of the SD with similar total W erosion flux.The reasons for this are:(1)W impurities in the core of the SFD mainly originate from the inner divertor,which has a short leg,and the source is close to the divertor entrance and upstream separatrix.Furthermore,the W ionization source(S_(W0))is much stronger,especially near the divertor entrance.(2)The region overlap of S_(W0)and F_(W,TOT)pointing upstream promote W accumulation in the core.Moreover,the influence of W source locations at the inner target on W transport in the SFD is investigated.Tungsten impurity in the core is mainly contributed by target erosion in the common flux region(CFR)away from the strike point.This is attributed to the fact that the W source at this location enhances the ionization source above the W ion stagnation point,which sequentially increases W penetration.Therefore,the suppression of far SOL inner target erosion can effectively prevent W impurities from accumulating in the core.展开更多
ArbiTER(Arbitrary Topology Equation Reader)is a new code for solving linear eigenvalue problems arising from a broad range of physics and geometry models.The primary application area envisioned is boundary plasma phys...ArbiTER(Arbitrary Topology Equation Reader)is a new code for solving linear eigenvalue problems arising from a broad range of physics and geometry models.The primary application area envisioned is boundary plasma physics in magnetic confinement devices;however ArbiTER should be applicable to other science and engineering fields as well.The code permits a variable numbers of dimensions,making possible application to both fluid and kinetic models.The use of specialized equation and topology parsers permits a high degree of flexibility in specifying the physics and geometry.展开更多
基金supported by National Natural Science Foundation of China(Nos.12235002 and 12122503)National Key R&D Program of China(No.2018YFE0301101)+1 种基金Dalian Science&Technology Talents Program(No.2022RJ11)Xingliao Talent Project(No.XLYC2203182)。
文摘Tungsten(W)accumulation in the core,depending on W generation and transport in the edge region,is a severe issue in fusion reactors.Compared to standard divertors(SDs),snowflake divertors(SFDs)can effectively suppress the heat flux,while the impact of magnetic configurations on W core accumulation remains unclear.In this study,the kinetic code DIVIMP combined with the SOLPS-ITER code is applied to investigate the effects of divertor magnetic configurations(SD versus SFD)on W accumulation during neon injection in HL-3.It is found that the W concentration in the core of the SFD is significantly higher than that of the SD with similar total W erosion flux.The reasons for this are:(1)W impurities in the core of the SFD mainly originate from the inner divertor,which has a short leg,and the source is close to the divertor entrance and upstream separatrix.Furthermore,the W ionization source(S_(W0))is much stronger,especially near the divertor entrance.(2)The region overlap of S_(W0)and F_(W,TOT)pointing upstream promote W accumulation in the core.Moreover,the influence of W source locations at the inner target on W transport in the SFD is investigated.Tungsten impurity in the core is mainly contributed by target erosion in the common flux region(CFR)away from the strike point.This is attributed to the fact that the W source at this location enhances the ionization source above the W ion stagnation point,which sequentially increases W penetration.Therefore,the suppression of far SOL inner target erosion can effectively prevent W impurities from accumulating in the core.
文摘ArbiTER(Arbitrary Topology Equation Reader)is a new code for solving linear eigenvalue problems arising from a broad range of physics and geometry models.The primary application area envisioned is boundary plasma physics in magnetic confinement devices;however ArbiTER should be applicable to other science and engineering fields as well.The code permits a variable numbers of dimensions,making possible application to both fluid and kinetic models.The use of specialized equation and topology parsers permits a high degree of flexibility in specifying the physics and geometry.