文章提出一种在片上系统(System on Chip,SoC)实现高吞吐率的有限状态熵编码(finite state entropy,FSE)算法。通过压缩率、速度、资源消耗、功耗4个方面对所提出的编码器和解码器与典型的硬件哈夫曼编码(Huffman coding,HC)进行性能比...文章提出一种在片上系统(System on Chip,SoC)实现高吞吐率的有限状态熵编码(finite state entropy,FSE)算法。通过压缩率、速度、资源消耗、功耗4个方面对所提出的编码器和解码器与典型的硬件哈夫曼编码(Huffman coding,HC)进行性能比较,结果表明,所提出的硬件FSE编码器和解码器具有显著优势。硬件FSE(hFSE)架构实现在SoC的处理系统和可编程逻辑块(programmable logic,PL)上,通过高级可扩展接口(Advanced eXtensible Interface 4,AXI4)总线连接SoC的处理系统和可编程逻辑块。算法测试显示,FSE算法在非均匀数据分布和大数据量情况下,具有更好的压缩率。该文设计的编码器和解码器已在可编程逻辑块上实现,其中包括1个可配置的缓冲模块,将比特流作为单字节或双字节配置输出到8 bit位宽4096深度或16 bit位宽2048深度的块随机访问存储器(block random access memory,BRAM)中。所提出的FSE硬件架构为实时压缩应用提供了高吞吐率、低功耗和低资源消耗的硬件实现。展开更多
As the technology of IP-core-reused has been widely used, a lot of intellectual property (IP) cores have been embedded in different layers of system-on-chip (SOC). Although the cycles of development and overhead a...As the technology of IP-core-reused has been widely used, a lot of intellectual property (IP) cores have been embedded in different layers of system-on-chip (SOC). Although the cycles of development and overhead are reduced by this method, it is a challenge to the SOC test. This paper proposes a scheduling method based on the virtual flattened architecture for hierarchical SOC, which breaks the hierarchical architecture to the virtual flattened one. Moreover, this method has more advantages compared with the traditional one, which tests the parent cores and child cores separately. Finally, the method is verified by the ITC'02 benchmark, and gives good results that reduce the test time and overhead effectively.展开更多
无线片上系统(System on Chip,SoC)已成为物联网产业发展的基础,在现代信息社会中占有越来越重要的地位。但由于通信算法的复杂化、通信协议的多样化,对无线通信设备的要求也在提高。针对此问题,使用Arm®Cortex™-M0处理器设计无线S...无线片上系统(System on Chip,SoC)已成为物联网产业发展的基础,在现代信息社会中占有越来越重要的地位。但由于通信算法的复杂化、通信协议的多样化,对无线通信设备的要求也在提高。针对此问题,使用Arm®Cortex™-M0处理器设计无线SoC,使用先进高性能总线(Advanced High-performance Bus,AHB)与先进外围总线(Advanced Peripheral Bus,APB)连接外设,Msi001芯片采集FM信号后通过解调算法得出解调信号,利用接收信号的强度指示(Received Signal Strength Indicator,RSSI)模块实现FM电台收发和自动搜台,结合液晶显示器(Liquid Crystal Display,LCD)屏、矩阵键盘、数码管等模块实现人机交互,相比传统无线通信设备有更好的音质和更快的响应速度。展开更多
文摘文章提出一种在片上系统(System on Chip,SoC)实现高吞吐率的有限状态熵编码(finite state entropy,FSE)算法。通过压缩率、速度、资源消耗、功耗4个方面对所提出的编码器和解码器与典型的硬件哈夫曼编码(Huffman coding,HC)进行性能比较,结果表明,所提出的硬件FSE编码器和解码器具有显著优势。硬件FSE(hFSE)架构实现在SoC的处理系统和可编程逻辑块(programmable logic,PL)上,通过高级可扩展接口(Advanced eXtensible Interface 4,AXI4)总线连接SoC的处理系统和可编程逻辑块。算法测试显示,FSE算法在非均匀数据分布和大数据量情况下,具有更好的压缩率。该文设计的编码器和解码器已在可编程逻辑块上实现,其中包括1个可配置的缓冲模块,将比特流作为单字节或双字节配置输出到8 bit位宽4096深度或16 bit位宽2048深度的块随机访问存储器(block random access memory,BRAM)中。所提出的FSE硬件架构为实时压缩应用提供了高吞吐率、低功耗和低资源消耗的硬件实现。
基金Project supported by the Applied Materials Foundation Project of Science and Technology Commission of Shanghai Mu-nicipality (Grant No.08700741000)the System Design on Chip Project of Science and Technology Commission of Shanghai Municipality (Grant No.08706201000)+1 种基金the Leading Academic Discipline Project of Shanghai Municipal Education Committee(Grant No.J50104)the Innovation Foundation Project of Shanghai University
文摘As the technology of IP-core-reused has been widely used, a lot of intellectual property (IP) cores have been embedded in different layers of system-on-chip (SOC). Although the cycles of development and overhead are reduced by this method, it is a challenge to the SOC test. This paper proposes a scheduling method based on the virtual flattened architecture for hierarchical SOC, which breaks the hierarchical architecture to the virtual flattened one. Moreover, this method has more advantages compared with the traditional one, which tests the parent cores and child cores separately. Finally, the method is verified by the ITC'02 benchmark, and gives good results that reduce the test time and overhead effectively.