社交推荐(Social Recommendation,SoRec)模型是一类典型的融合信任信息的矩阵分解方法,在个性化推荐系统中得到了广泛的研究和应用.目前大部分SoRec模型的研究成果都是基于显式信任信息,这对于实际中难以获取显式信息的数据集无法使用,...社交推荐(Social Recommendation,SoRec)模型是一类典型的融合信任信息的矩阵分解方法,在个性化推荐系统中得到了广泛的研究和应用.目前大部分SoRec模型的研究成果都是基于显式信任信息,这对于实际中难以获取显式信息的数据集无法使用,并且现有的SoRec模型尚未充分考虑不同情形下潜在因子的多变性,大大影响了推荐的准确性.为了解决上述问题,本文针对仅有评分信息的非负目标矩阵,首先利用已知用户评分信息挖掘用户间的隐式信任关系矩阵;然后基于得到的信任信息,考虑两种不同情形下用户潜在特征矩阵的组合,提出了一种改进的SoRec(Improved Social Recommendation,ISoRec)模型;再者,通过在梯度下降算法中引入单因子乘法更新规则进行模型训练,不仅保证目标矩阵的非负性,还提高了算法在稀疏数据集的适用性.最后,本文结合真实有效的数据集对所有模型进行实验验证其有效性,结果证明ISoRec模型在精确度上有所提升.展开更多
文摘社交推荐(Social Recommendation,SoRec)模型是一类典型的融合信任信息的矩阵分解方法,在个性化推荐系统中得到了广泛的研究和应用.目前大部分SoRec模型的研究成果都是基于显式信任信息,这对于实际中难以获取显式信息的数据集无法使用,并且现有的SoRec模型尚未充分考虑不同情形下潜在因子的多变性,大大影响了推荐的准确性.为了解决上述问题,本文针对仅有评分信息的非负目标矩阵,首先利用已知用户评分信息挖掘用户间的隐式信任关系矩阵;然后基于得到的信任信息,考虑两种不同情形下用户潜在特征矩阵的组合,提出了一种改进的SoRec(Improved Social Recommendation,ISoRec)模型;再者,通过在梯度下降算法中引入单因子乘法更新规则进行模型训练,不仅保证目标矩阵的非负性,还提高了算法在稀疏数据集的适用性.最后,本文结合真实有效的数据集对所有模型进行实验验证其有效性,结果证明ISoRec模型在精确度上有所提升.