A highly crosslinked, monodispersed polystyrene(PS) particle was prepared by a seeded batch dispersion polymerization with a monomer absorption method. Prior to polymerization, 1,9 lam monodispersed PS seed particle...A highly crosslinked, monodispersed polystyrene(PS) particle was prepared by a seeded batch dispersion polymerization with a monomer absorption method. Prior to polymerization, 1,9 lam monodispersed PS seed particles were treated under an optimum condition of monomer absorption. The effects of divinylbenzebe(DVB) concentration and polymerization temperature were examined for styrene(in PS seed)/styrene(in the second stage) mass ratio of 1:1 in the medium range of EtOH/water mass ratio of 100/0-80/20 and 2.3 μm uniform crosslinked PS particles containing 15%-20% (mass fraction) DVB were prepared at 60-70 ℃. The results show that monomer absorption before the second stage of polymerization is more effective to prepare highly crosslinked monodispersed PS particles.展开更多
Submicron-sized peanut-shaped poly(methyl methacrylate)/polystyrene (PMMA/PS) particles were successfully synthesized by seeded soap-free emulsion polymerization of styrene on the spherical crosslinked PMMA seed p...Submicron-sized peanut-shaped poly(methyl methacrylate)/polystyrene (PMMA/PS) particles were successfully synthesized by seeded soap-free emulsion polymerization of styrene on the spherical crosslinked PMMA seed particles. The obtained peanut- shaped particles showed a novel internal morphology: PS phase formed one domain which linked to the other domain having PMMA core encased by PS shell.展开更多
Micron-sized nonspherical polymer particles having different morphologies were synthesized by seeded soap-free emulsion polymerization of styrene (St) and ethyleneglycol dimethacrylate (EGDMA, used as a crosslinker...Micron-sized nonspherical polymer particles having different morphologies were synthesized by seeded soap-free emulsion polymerization of styrene (St) and ethyleneglycol dimethacrylate (EGDMA, used as a crosslinker) on spherical, linear polystyrene (PS) seed particles. The morphology of the resulting PS/poly(St-co-EGDMA) particles was dependent on the crosslinker concentration and polymerization temperature.展开更多
Soap-free P(MMA-EA-MAA) particles with narrow size distribution were synthesized by seeded emulsion polymerization of methyl methacrylate (MMA), ethyl acrylate (EA) and methacrylic acid (MAA), and large voids inside t...Soap-free P(MMA-EA-MAA) particles with narrow size distribution were synthesized by seeded emulsion polymerization of methyl methacrylate (MMA), ethyl acrylate (EA) and methacrylic acid (MAA), and large voids inside the particles were generated by alkali posttreatment in the presence of 2-butanone. Results indicated that the size of void and the particle volume were related with the amount of 2-butanone. The generation mechanism of voids was proposed.展开更多
To enhance the nucleation and crystallization properties of polyester (e.g., polyethylene terephthalate, PET), core-shell structured particles are used to improve these properties by controlling the inorganic di...To enhance the nucleation and crystallization properties of polyester (e.g., polyethylene terephthalate, PET), core-shell structured particles are used to improve these properties by controlling the inorganic dispersion properties in the polymers. In the paper, monodisperse particles of silica/polystyrene (PS) are prepared with both dispersion and emulsion polymerization techniques. The monodisperse silicon dioxide particles are first prepared with the seed growth method and modified by the coupling agents. Silica is properly modified with KH-570, and its size deviation is 3.0% or so. The modified silica then reacts with the mixture of ethanol, water medium, and monomer of styrene under dispersion polymerization. Results show that the dispersion polymerization technique is more suitable for monodisperse core-shell SiO2/PS particles than that of the emulsion. The morphology and molecular structure of the core-shell particles are investigated with the transmission electron microscope (TEM), and fourier transform infra-red spectroscopy (FTIR). The results show that the modified silica particles are successfully encapsulated with polystyrene. The average number of silica particles encapsulated into each polystyrene sphere decreases when the size of silica particles increases from 50 nm to 600 nm, and will approach one when the silica is greater than 380nm in size. The mass ratio for silica/PS particles in emulsion polymerization is 4.7/1, lower than that of 6.8/1 for dispersion polymerization, which is the first reported optimized data for preparing the similar monodisperse composite particles. Thus, the PS shell in the former is thinner than that in the latter.展开更多
Monodisperse silicon dioxide particles have been prepared by the seed growth method,and different coupling agents were used for modifying these silica particles.The results show that the size deviation of silica parti...Monodisperse silicon dioxide particles have been prepared by the seed growth method,and different coupling agents were used for modifying these silica particles.The results show that the size deviation of silica particles modified with[3 (methacryloyloxy)propyl] trimethoxysilane(KH 570) is much lower than that of silica particles modified with vinyl triethyloxy silane as the coupling agent.In the presence of ethanol and water,styrene may react with silica modified by KH 570 in dispersion polymerization.It was discovered through transmission electron microscopy and energy spectrum that the modified silica particles were successfully encapsulated with polystyrene.The number of silica particles encapsulated with polystyrene was continually decreased with the increase of the size of silica particles.Moreover,the number of silica particles was nearly unity in each SiO 2/PS composite particle when the silica particle size was greater than 410?nm.展开更多
基金the second stage of BK21 program for supporting a fellowship
文摘A highly crosslinked, monodispersed polystyrene(PS) particle was prepared by a seeded batch dispersion polymerization with a monomer absorption method. Prior to polymerization, 1,9 lam monodispersed PS seed particles were treated under an optimum condition of monomer absorption. The effects of divinylbenzebe(DVB) concentration and polymerization temperature were examined for styrene(in PS seed)/styrene(in the second stage) mass ratio of 1:1 in the medium range of EtOH/water mass ratio of 100/0-80/20 and 2.3 μm uniform crosslinked PS particles containing 15%-20% (mass fraction) DVB were prepared at 60-70 ℃. The results show that monomer absorption before the second stage of polymerization is more effective to prepare highly crosslinked monodispersed PS particles.
基金supported by National Natural Science Foundation of China(No.50943028)Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘Submicron-sized peanut-shaped poly(methyl methacrylate)/polystyrene (PMMA/PS) particles were successfully synthesized by seeded soap-free emulsion polymerization of styrene on the spherical crosslinked PMMA seed particles. The obtained peanut- shaped particles showed a novel internal morphology: PS phase formed one domain which linked to the other domain having PMMA core encased by PS shell.
基金partially supported by the National Natural Science Foundation of China(No.50943028)Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘Micron-sized nonspherical polymer particles having different morphologies were synthesized by seeded soap-free emulsion polymerization of styrene (St) and ethyleneglycol dimethacrylate (EGDMA, used as a crosslinker) on spherical, linear polystyrene (PS) seed particles. The morphology of the resulting PS/poly(St-co-EGDMA) particles was dependent on the crosslinker concentration and polymerization temperature.
基金the National 863 Project of China(grant No.2001AA242041)for financial support
文摘Soap-free P(MMA-EA-MAA) particles with narrow size distribution were synthesized by seeded emulsion polymerization of methyl methacrylate (MMA), ethyl acrylate (EA) and methacrylic acid (MAA), and large voids inside the particles were generated by alkali posttreatment in the presence of 2-butanone. Results indicated that the size of void and the particle volume were related with the amount of 2-butanone. The generation mechanism of voids was proposed.
文摘To enhance the nucleation and crystallization properties of polyester (e.g., polyethylene terephthalate, PET), core-shell structured particles are used to improve these properties by controlling the inorganic dispersion properties in the polymers. In the paper, monodisperse particles of silica/polystyrene (PS) are prepared with both dispersion and emulsion polymerization techniques. The monodisperse silicon dioxide particles are first prepared with the seed growth method and modified by the coupling agents. Silica is properly modified with KH-570, and its size deviation is 3.0% or so. The modified silica then reacts with the mixture of ethanol, water medium, and monomer of styrene under dispersion polymerization. Results show that the dispersion polymerization technique is more suitable for monodisperse core-shell SiO2/PS particles than that of the emulsion. The morphology and molecular structure of the core-shell particles are investigated with the transmission electron microscope (TEM), and fourier transform infra-red spectroscopy (FTIR). The results show that the modified silica particles are successfully encapsulated with polystyrene. The average number of silica particles encapsulated into each polystyrene sphere decreases when the size of silica particles increases from 50 nm to 600 nm, and will approach one when the silica is greater than 380nm in size. The mass ratio for silica/PS particles in emulsion polymerization is 4.7/1, lower than that of 6.8/1 for dispersion polymerization, which is the first reported optimized data for preparing the similar monodisperse composite particles. Thus, the PS shell in the former is thinner than that in the latter.
文摘Monodisperse silicon dioxide particles have been prepared by the seed growth method,and different coupling agents were used for modifying these silica particles.The results show that the size deviation of silica particles modified with[3 (methacryloyloxy)propyl] trimethoxysilane(KH 570) is much lower than that of silica particles modified with vinyl triethyloxy silane as the coupling agent.In the presence of ethanol and water,styrene may react with silica modified by KH 570 in dispersion polymerization.It was discovered through transmission electron microscopy and energy spectrum that the modified silica particles were successfully encapsulated with polystyrene.The number of silica particles encapsulated with polystyrene was continually decreased with the increase of the size of silica particles.Moreover,the number of silica particles was nearly unity in each SiO 2/PS composite particle when the silica particle size was greater than 410?nm.