Abstract: Let Ω belong to R^N be a smooth bounded domain such that 0 ∈ Ω, N ≥ 5, 2^* :2N/N-4 is the critical Sobolev exponent, and f(x) is a given function. By using the variational methods, the paper proves ...Abstract: Let Ω belong to R^N be a smooth bounded domain such that 0 ∈ Ω, N ≥ 5, 2^* :2N/N-4 is the critical Sobolev exponent, and f(x) is a given function. By using the variational methods, the paper proves the existence of solutions for the singular critical in the homogeneous problem △^u-μ u/{x}^4=|μ|^2*-2u+f(x) with Dirichlet boundary condition on 偏dΩ under some assumptions on f(x) and μ.展开更多
In this paper,the initial boundary value problems of the nonlinear Sobolev-Galpern equation are studied.The existence,uniqueness of local solution for the problem are obtained by means of a special Green's functio...In this paper,the initial boundary value problems of the nonlinear Sobolev-Galpern equation are studied.The existence,uniqueness of local solution for the problem are obtained by means of a special Green's function and the contraction mapping principle.Finally,the blow-up of solution in finite time under some assumed conditions is proved with the aid of Jensen's inequality.展开更多
Let M(u) be an N function, A=D r+∑r-1k=0a k(x)D k a linear differential operator and W M(A) the Sobolev Orlicz class defined by M(u) and A. In this paper we give the asymptotic estimates...Let M(u) be an N function, A=D r+∑r-1k=0a k(x)D k a linear differential operator and W M(A) the Sobolev Orlicz class defined by M(u) and A. In this paper we give the asymptotic estimates of the n K width d n(W M(A),L 2[0,1]) .展开更多
Problems, which are studied in the paper, concern to theoretical aspects of interpolation theory. As is known, interpolation is one of the methods for approximate representation or recovery of functions on the basis o...Problems, which are studied in the paper, concern to theoretical aspects of interpolation theory. As is known, interpolation is one of the methods for approximate representation or recovery of functions on the basis of their given values at points of a grid. Interpolating functions can be chosen by many various ways. In the paper the authors are interested in interpolating functions, for which the Laplace operator, applied to them, has a minimal norm. The authors interpolate infinite bounded sequences at the knots of the square grid in Euclidian space. The considered problem is formulated as an extremal one. The main result of the paper is the theorem, in which certain estimates for the uniform norm of the Laplace operator applied to smooth interpolating functions of two real variables are established for the class of all bounded (in the corresponding discrete norm) interpolated sequences. Also connections of the considered interpolation problem with other problems and with embeddings of the Sobolev classes into the space of continuous functions are discussed. In the final part of the main section of the paper, the authors formulate some open problems in this area and sketch possible approaches to the search of solutions. In order to prove the main results, the authors use methods of classical mathematical analysis and the theory of polynomial splines of one variable with equidistant knots.展开更多
In this paper, we study the invariant subspaces of the operator Mz on the Sobolev disk algebra R(D) and characterize the invariant subspace with finite codimension.
It is well known that the doubly weighted Hardy-Littlewood-Sobolev inequality is as follows,|∫Rn ∫Rn f(x)g(y)/|x|^α|x-y|^λ|y|^β dxdy|≤ B(p,q,α,λ,β ,n)||f||Lp(Rn)||g||Lq(Rn).The main ...It is well known that the doubly weighted Hardy-Littlewood-Sobolev inequality is as follows,|∫Rn ∫Rn f(x)g(y)/|x|^α|x-y|^λ|y|^β dxdy|≤ B(p,q,α,λ,β ,n)||f||Lp(Rn)||g||Lq(Rn).The main purpose of this paper is to give the sharp constants B(p,q,,,,n)for the above inequality for three cases:(i)p=1 and q=1;(ii)p=1 and 1q 6∞,or 1p 6∞and q=1;(iii)1p,q∞and 1p+1q=1.In addition,the explicit bounds can be obtained for the case 1p,q∞and 1/p+1/q〉1.展开更多
We establish Talagrand's T2-transportation inequalities for infinite dimensional dissipative diffusions with sharp constants, through Galerkin type's approximations and the known results in the finite dimensional ca...We establish Talagrand's T2-transportation inequalities for infinite dimensional dissipative diffusions with sharp constants, through Galerkin type's approximations and the known results in the finite dimensional case. Furthermore in the additive noise case we prove also logarithmic Sobolev inequalities with sharp constants. Applications to Reaction- Diffusion equations are provided.展开更多
Let Ω be a domain in RN. It is shown that a generalized Poincaré inequality holds in cones contained in the Sobolev space Wl,P( )(Ω), where p(.) : Ω → [1, ∞[ is a variable exponent. This inequality is...Let Ω be a domain in RN. It is shown that a generalized Poincaré inequality holds in cones contained in the Sobolev space Wl,P( )(Ω), where p(.) : Ω → [1, ∞[ is a variable exponent. This inequality is itself a corollary to a more general result about equivalent norms over such cones. The approach in this paper avoids the difficulty arising from the possible lack of density of the space ;D(Ω) in the space {v ∈ Wl,P( )(Ω); tr v = 0 on δΩ}. Two applications are also discussed.展开更多
This paper is devoted to the study of fractional(q, p)-Sobolev-Poincar′e inequalities in irregular domains. In particular, the author establishes(essentially) sharp fractional(q, p)-Sobolev-Poincar′e inequalities in...This paper is devoted to the study of fractional(q, p)-Sobolev-Poincar′e inequalities in irregular domains. In particular, the author establishes(essentially) sharp fractional(q, p)-Sobolev-Poincar′e inequalities in s-John domains and in domains satisfying the quasihyperbolic boundary conditions. When the order of the fractional derivative tends to 1, our results tend to the results for the usual derivatives. Furthermore, the author verifies that those domains which support the fractional(q, p)-Sobolev-Poincar′e inequalities together with a separation property are s-diam John domains for certain s, depending only on the associated data. An inaccurate statement in [Buckley, S. and Koskela, P.,Sobolev-Poincar′e implies John, Math. Res. Lett., 2(5), 1995, 577–593] is also pointed out.展开更多
Here the authors are interested in the zero set of Sobolev functions and functions of bounded variation with negative power of integrability. The main result is a general Hausdorff dimension estimate on the size of ze...Here the authors are interested in the zero set of Sobolev functions and functions of bounded variation with negative power of integrability. The main result is a general Hausdorff dimension estimate on the size of zero set. The research is motivated by the model on van der waal force driven thin film, which is a singular elliptic equation. After obtaining some basic regularity result, the authors get an estimate on the size of singular set; such set corresponds to the thin film rupture set in the thin film model.展开更多
The authors consider the problem:-div(p△u)=u^q-1+λu,u〉0 in Ωmu=0 on эΩ,where Ω is a bounded domain in R^n,n≥3,p:^-Ω→R is a given positive weight such that p∈H^1(Ω)∩С(^-Ω),λ is a real constant ...The authors consider the problem:-div(p△u)=u^q-1+λu,u〉0 in Ωmu=0 on эΩ,where Ω is a bounded domain in R^n,n≥3,p:^-Ω→R is a given positive weight such that p∈H^1(Ω)∩С(^-Ω),λ is a real constant and q=2n/n-2,and stydu the effect of the behavior of p near its minima and the impact of the geometry of domain on the existence of solutions for the above problem.展开更多
文摘Abstract: Let Ω belong to R^N be a smooth bounded domain such that 0 ∈ Ω, N ≥ 5, 2^* :2N/N-4 is the critical Sobolev exponent, and f(x) is a given function. By using the variational methods, the paper proves the existence of solutions for the singular critical in the homogeneous problem △^u-μ u/{x}^4=|μ|^2*-2u+f(x) with Dirichlet boundary condition on 偏dΩ under some assumptions on f(x) and μ.
文摘In this paper,the initial boundary value problems of the nonlinear Sobolev-Galpern equation are studied.The existence,uniqueness of local solution for the problem are obtained by means of a special Green's function and the contraction mapping principle.Finally,the blow-up of solution in finite time under some assumed conditions is proved with the aid of Jensen's inequality.
文摘Let M(u) be an N function, A=D r+∑r-1k=0a k(x)D k a linear differential operator and W M(A) the Sobolev Orlicz class defined by M(u) and A. In this paper we give the asymptotic estimates of the n K width d n(W M(A),L 2[0,1]) .
文摘Problems, which are studied in the paper, concern to theoretical aspects of interpolation theory. As is known, interpolation is one of the methods for approximate representation or recovery of functions on the basis of their given values at points of a grid. Interpolating functions can be chosen by many various ways. In the paper the authors are interested in interpolating functions, for which the Laplace operator, applied to them, has a minimal norm. The authors interpolate infinite bounded sequences at the knots of the square grid in Euclidian space. The considered problem is formulated as an extremal one. The main result of the paper is the theorem, in which certain estimates for the uniform norm of the Laplace operator applied to smooth interpolating functions of two real variables are established for the class of all bounded (in the corresponding discrete norm) interpolated sequences. Also connections of the considered interpolation problem with other problems and with embeddings of the Sobolev classes into the space of continuous functions are discussed. In the final part of the main section of the paper, the authors formulate some open problems in this area and sketch possible approaches to the search of solutions. In order to prove the main results, the authors use methods of classical mathematical analysis and the theory of polynomial splines of one variable with equidistant knots.
基金the National Natural Science Foundation of China (10471041)
文摘In this paper, we study the invariant subspaces of the operator Mz on the Sobolev disk algebra R(D) and characterize the invariant subspace with finite codimension.
基金supported by National Natural Science Foundation of China(Grant Nos.11071250 and 11271162)
文摘It is well known that the doubly weighted Hardy-Littlewood-Sobolev inequality is as follows,|∫Rn ∫Rn f(x)g(y)/|x|^α|x-y|^λ|y|^β dxdy|≤ B(p,q,α,λ,β ,n)||f||Lp(Rn)||g||Lq(Rn).The main purpose of this paper is to give the sharp constants B(p,q,,,,n)for the above inequality for three cases:(i)p=1 and q=1;(ii)p=1 and 1q 6∞,or 1p 6∞and q=1;(iii)1p,q∞and 1p+1q=1.In addition,the explicit bounds can be obtained for the case 1p,q∞and 1/p+1/q〉1.
基金Project supported by the Yangtze Scholarship Program
文摘We establish Talagrand's T2-transportation inequalities for infinite dimensional dissipative diffusions with sharp constants, through Galerkin type's approximations and the known results in the finite dimensional case. Furthermore in the additive noise case we prove also logarithmic Sobolev inequalities with sharp constants. Applications to Reaction- Diffusion equations are provided.
文摘Let Ω be a domain in RN. It is shown that a generalized Poincaré inequality holds in cones contained in the Sobolev space Wl,P( )(Ω), where p(.) : Ω → [1, ∞[ is a variable exponent. This inequality is itself a corollary to a more general result about equivalent norms over such cones. The approach in this paper avoids the difficulty arising from the possible lack of density of the space ;D(Ω) in the space {v ∈ Wl,P( )(Ω); tr v = 0 on δΩ}. Two applications are also discussed.
文摘This paper is devoted to the study of fractional(q, p)-Sobolev-Poincar′e inequalities in irregular domains. In particular, the author establishes(essentially) sharp fractional(q, p)-Sobolev-Poincar′e inequalities in s-John domains and in domains satisfying the quasihyperbolic boundary conditions. When the order of the fractional derivative tends to 1, our results tend to the results for the usual derivatives. Furthermore, the author verifies that those domains which support the fractional(q, p)-Sobolev-Poincar′e inequalities together with a separation property are s-diam John domains for certain s, depending only on the associated data. An inaccurate statement in [Buckley, S. and Koskela, P.,Sobolev-Poincar′e implies John, Math. Res. Lett., 2(5), 1995, 577–593] is also pointed out.
文摘Here the authors are interested in the zero set of Sobolev functions and functions of bounded variation with negative power of integrability. The main result is a general Hausdorff dimension estimate on the size of zero set. The research is motivated by the model on van der waal force driven thin film, which is a singular elliptic equation. After obtaining some basic regularity result, the authors get an estimate on the size of singular set; such set corresponds to the thin film rupture set in the thin film model.
文摘The authors consider the problem:-div(p△u)=u^q-1+λu,u〉0 in Ωmu=0 on эΩ,where Ω is a bounded domain in R^n,n≥3,p:^-Ω→R is a given positive weight such that p∈H^1(Ω)∩С(^-Ω),λ is a real constant and q=2n/n-2,and stydu the effect of the behavior of p near its minima and the impact of the geometry of domain on the existence of solutions for the above problem.