Urban planning has become a widely concern for minimizing the negative effects of urban expansion on terrestrial ecosystems. We developed an interdisciplinary modeling framework to evaluate the effectiveness and short...Urban planning has become a widely concern for minimizing the negative effects of urban expansion on terrestrial ecosystems. We developed an interdisciplinary modeling framework to evaluate the effectiveness and shortcomings of urban expansion management strategies. A three-step method was applied to Yinchuan Plain in the northwestern of China, including(1)analyzing the relationship between landscape pattern and ecosystem service values through mathematical statistics;(2) predicting landscape pattern and ecosystem services change under different scenarios based on cellular automaton model(SLEUTH-3r model); and(3) designing and validating optimized scenario through integrating historical analysis experiments and future multi-comparison suggestions. Results have suggested that landscape composition and configuration can significantly affect regional ecosystem service values, especially the connectivity and shape of landscape. Compact urban growth policy and medium environment protection policy are the appropriate setting for urban expansion plan. Optimization validation of the combined designed scenario implied the reliability of this method. Our results highlighted the significance of integrating application of landscape pattern analysis, ecosystem service value evaluation,model simulation and multi-scenario prediction in urban planning.展开更多
The ecosystem is important because it is the life sustaining system for human survival.Three ecosystem characteristics are:regional particularities,ecosystem complexity and conventional cultural particularities.This p...The ecosystem is important because it is the life sustaining system for human survival.Three ecosystem characteristics are:regional particularities,ecosystem complexity and conventional cultural particularities.This paper develops a remote sensing based dynamic model to assess grassland ecosystem service values involving multidisciplinary knowledge.The ecological value of grassland ecosystems is focused on using a remote sensing technique in the model,and setting up the framework for a dynamic assessing model.The grassland ecological services condition and value in 1985 is used as the benchmark.The dynamic model has two adjusting indicators:biomass and price index.The biomass is simulated using the CASA(Carnegie-Ames-Stanford Approach) model.The price index was obtained from statistics data published by the statistical bureau.Results show that the grassland ecosystem value in Gansu Province was 28.36 billion Chinese Yuan in 1985,140.37 billion in 1999 and 130.86 billion in 2002.展开更多
Urban agglomerations,serving as pivotal centers of human activity,undergo swift alterations in ecosystem services prompted by shifts in land utilization.Strengthening the monitoring of ecosystem services in present an...Urban agglomerations,serving as pivotal centers of human activity,undergo swift alterations in ecosystem services prompted by shifts in land utilization.Strengthening the monitoring of ecosystem services in present and future urban agglomerations contributes to the rational planning of these areas and enhances the well-being of their inhabitants.Here,we analyzed land use conversion in the Yangtze River Delta(YRD)urban agglomeration during 1990-2020 and discussed the spatiotemporal response and main drivers of changes in ecosystem service value(ESV).By considering the different development strategic directions described in land use planning policies,we predicted land use conversion and its impact on ESV using the Future Land Use Simulation(FLUS)model in three scenari-os in 2025 and 2030.Results show that:1)from 1990 to 2020,land use change is mainly manifested as the continuous expansion of con-struction land to cultivated land.Among the reduced cultivated land,82.2%were occupied by construction land.2)The land use types conversion caused a loss of 21.85 billion yuan(RMB)in ESV during 1990-2020.Moreover,the large reduction of cultivated land area led to the continuous decline of food production value,accounting for 13%of the total ESV loss.3)From 2020 to 2030,land use change will mainly focus on Yangzhou and Zhenjiang in central Jiangsu Province and Taizhou in southern Zhejiang Province.Under the BAU(natural development)and ED(cultivated land protection)scenarios,construction land expansion remains dominant.In contrast,under the EP(ecological protection)scenario,the areas of water bodies and forest land increase significantly.Among the different scenarios,ESV is highest in the EP scenario,making it the optimal solution for sustainable land use.It can be seen that the space use conflict among urban,agriculture and ecology is a key factor leading to ESV change in the urban agglomeration of Yangtze River Delta.There-fore,it is crucial to maintain spatial land use coordination.Our findings provide suggestions for scientific and rational land use planning for the urban agglomeration.展开更多
As the most economically developed metropolitan area in China’s Yangtze River Delta,the rapid changing land use patterns of Suzhou-Wuxi-Changzhou(Su-Xi-Chang) metropolitan area have profound impacts on the ecosystem ...As the most economically developed metropolitan area in China’s Yangtze River Delta,the rapid changing land use patterns of Suzhou-Wuxi-Changzhou(Su-Xi-Chang) metropolitan area have profound impacts on the ecosystem service value(ESV).Based on the patterns of land use change and the ESV change in Su-Xi-Chang metropolitan area from 2000 to 2020,we set up four scenarios:natural development scenario,urban development scenario,arable land protection scenario and ecological protection scenario,and simulated the impact of land use changes on the ESV in these scenarios.The results showed that:1) the area of built-up land in the Su-XiChang metropolitan area increased significantly from 2000 to 2020,and the area of other types of land decreased.Arable land underwent the highest transfer-out area,and was primarily converted into built-up land.The total ESV of Su-Xi-Chang metropolitan area increased initially then declined from 2000–2020,and the value of almost all individual ecosystem services decreased.2) Population density,GDP per area,night lighting intensity,and road network density can negatively impact the ESV.3) The total ESV loss under the natural development and urban development scenarios was high,and the expansion of the built-up land and the drastic shrinkage of the arable land contributed to the ESV decline under both scenarios.The total ESV under arable land protection and ecological protection scenarios increases,and therefore these scenarios are suitable for future land use optimization in Su-Xi-Chang.This study could provide a certain reference for land use planning and allocation,and offer guidance for the rational allocation of land resources.展开更多
Ecosystem service values(ESV)are strongly influenced by the vegetation cover,which is heterogeneous across different vegetation types.We develop a dynamic evaluation model of ESV for Wuyishan National Park Pilot adjus...Ecosystem service values(ESV)are strongly influenced by the vegetation cover,which is heterogeneous across different vegetation types.We develop a dynamic evaluation model of ESV for Wuyishan National Park Pilot adjusted by the rate of inflation and the fractional vegetation cover,which is calculated by an enhanced vegetation index from 2000 to 2018.The spatio-temporal variation of vegetation was also examined.The results demonstrated that:(1)the unit area of ecosystem service values adjusted by vegetation cover(ESVVC)shows a gradient of forest>tea plantation>grassland>cropland,and the major ecosystem services provided by forests include soil formation and conservation,climate regulation,and biodiversity maintenance;(2)the ESV_(VC) increased to 2.1 billion yuan(The reference rate announced by the People’s Bank of China is the US dollar to 6.42 Yuan per dollar.)from 2000 to 2018.Higher and lower ESV_(VC) are predominant in the northwest and southeast region,respectively.In addition,changes of ecological protection structures and human disturbances negatively affected vegetation cover,leading to a decreased ESVVC from 2000 to 2005 in the Jiuqu Stream Ecological Protection Area and the Wuyishan National Scenic Spot.The implementation of ecological protection policies from 2010 to 2018 enhanced the ESV_(VC) in the study area;and,(3)the ESVVC is highest in the southeast and 25°–35°area with altitudes of 800–1000 m.Our model can provide timely and helpful information of changes in ESV for use in ecological corridor design and ecological security monitoring.展开更多
基金supported by the National Natural Science Foundation of China [Grant number 41371176]the Fundamental Research Funds for the Central Universities[Grant number lzujbky_2017_it91]
文摘Urban planning has become a widely concern for minimizing the negative effects of urban expansion on terrestrial ecosystems. We developed an interdisciplinary modeling framework to evaluate the effectiveness and shortcomings of urban expansion management strategies. A three-step method was applied to Yinchuan Plain in the northwestern of China, including(1)analyzing the relationship between landscape pattern and ecosystem service values through mathematical statistics;(2) predicting landscape pattern and ecosystem services change under different scenarios based on cellular automaton model(SLEUTH-3r model); and(3) designing and validating optimized scenario through integrating historical analysis experiments and future multi-comparison suggestions. Results have suggested that landscape composition and configuration can significantly affect regional ecosystem service values, especially the connectivity and shape of landscape. Compact urban growth policy and medium environment protection policy are the appropriate setting for urban expansion plan. Optimization validation of the combined designed scenario implied the reliability of this method. Our results highlighted the significance of integrating application of landscape pattern analysis, ecosystem service value evaluation,model simulation and multi-scenario prediction in urban planning.
基金supported by the CAS (Chinese Academy of Sciences) Action Plan for West Development Project "Watershed Allied Telemetry Experimental Research (WATER)"(grant number:KZCX2-XB2-09)the Global Change Research Program of China (2010CB951403)+2 种基金WP6 of FP7 topic ENV.2007.4.1.4.2 "Improving observing systems for water resource management"the National Natural Science Foundation of China (grant number:41071227)the Major Research Plan "Integrated Research on the Eco-Hydrological Process of Heihe Basin" of National Natural Science Foundation of China,topic (grant number:91025001)
文摘The ecosystem is important because it is the life sustaining system for human survival.Three ecosystem characteristics are:regional particularities,ecosystem complexity and conventional cultural particularities.This paper develops a remote sensing based dynamic model to assess grassland ecosystem service values involving multidisciplinary knowledge.The ecological value of grassland ecosystems is focused on using a remote sensing technique in the model,and setting up the framework for a dynamic assessing model.The grassland ecological services condition and value in 1985 is used as the benchmark.The dynamic model has two adjusting indicators:biomass and price index.The biomass is simulated using the CASA(Carnegie-Ames-Stanford Approach) model.The price index was obtained from statistics data published by the statistical bureau.Results show that the grassland ecosystem value in Gansu Province was 28.36 billion Chinese Yuan in 1985,140.37 billion in 1999 and 130.86 billion in 2002.
基金Under the auspices of National Natural Science Foundation of China(No.42276234)National Social Science Foundation Major Project of China(No.23&ZD105)+1 种基金the Open Fund of the Key Laboratory of Coastal Zone Exploitation and Protection,Ministry of Natural Resources of China(No.2023CZEPK04)the Science and Technology Major Project of Ningbo(No.2021Z181)。
文摘Urban agglomerations,serving as pivotal centers of human activity,undergo swift alterations in ecosystem services prompted by shifts in land utilization.Strengthening the monitoring of ecosystem services in present and future urban agglomerations contributes to the rational planning of these areas and enhances the well-being of their inhabitants.Here,we analyzed land use conversion in the Yangtze River Delta(YRD)urban agglomeration during 1990-2020 and discussed the spatiotemporal response and main drivers of changes in ecosystem service value(ESV).By considering the different development strategic directions described in land use planning policies,we predicted land use conversion and its impact on ESV using the Future Land Use Simulation(FLUS)model in three scenari-os in 2025 and 2030.Results show that:1)from 1990 to 2020,land use change is mainly manifested as the continuous expansion of con-struction land to cultivated land.Among the reduced cultivated land,82.2%were occupied by construction land.2)The land use types conversion caused a loss of 21.85 billion yuan(RMB)in ESV during 1990-2020.Moreover,the large reduction of cultivated land area led to the continuous decline of food production value,accounting for 13%of the total ESV loss.3)From 2020 to 2030,land use change will mainly focus on Yangzhou and Zhenjiang in central Jiangsu Province and Taizhou in southern Zhejiang Province.Under the BAU(natural development)and ED(cultivated land protection)scenarios,construction land expansion remains dominant.In contrast,under the EP(ecological protection)scenario,the areas of water bodies and forest land increase significantly.Among the different scenarios,ESV is highest in the EP scenario,making it the optimal solution for sustainable land use.It can be seen that the space use conflict among urban,agriculture and ecology is a key factor leading to ESV change in the urban agglomeration of Yangtze River Delta.There-fore,it is crucial to maintain spatial land use coordination.Our findings provide suggestions for scientific and rational land use planning for the urban agglomeration.
基金Under the auspices of Humanities and Social Sciences Foundation of Soochow University(No.22XM2008)National Social Science Foundation of China(No.23BGL168)。
文摘As the most economically developed metropolitan area in China’s Yangtze River Delta,the rapid changing land use patterns of Suzhou-Wuxi-Changzhou(Su-Xi-Chang) metropolitan area have profound impacts on the ecosystem service value(ESV).Based on the patterns of land use change and the ESV change in Su-Xi-Chang metropolitan area from 2000 to 2020,we set up four scenarios:natural development scenario,urban development scenario,arable land protection scenario and ecological protection scenario,and simulated the impact of land use changes on the ESV in these scenarios.The results showed that:1) the area of built-up land in the Su-XiChang metropolitan area increased significantly from 2000 to 2020,and the area of other types of land decreased.Arable land underwent the highest transfer-out area,and was primarily converted into built-up land.The total ESV of Su-Xi-Chang metropolitan area increased initially then declined from 2000–2020,and the value of almost all individual ecosystem services decreased.2) Population density,GDP per area,night lighting intensity,and road network density can negatively impact the ESV.3) The total ESV loss under the natural development and urban development scenarios was high,and the expansion of the built-up land and the drastic shrinkage of the arable land contributed to the ESV decline under both scenarios.The total ESV under arable land protection and ecological protection scenarios increases,and therefore these scenarios are suitable for future land use optimization in Su-Xi-Chang.This study could provide a certain reference for land use planning and allocation,and offer guidance for the rational allocation of land resources.
基金This study was supported and funded by the projects of National Natural Science Foundation of China(No.41201100)the projects of Science and Technology Innovation Foundation of FAFU,China(No.KFA18038A).
文摘Ecosystem service values(ESV)are strongly influenced by the vegetation cover,which is heterogeneous across different vegetation types.We develop a dynamic evaluation model of ESV for Wuyishan National Park Pilot adjusted by the rate of inflation and the fractional vegetation cover,which is calculated by an enhanced vegetation index from 2000 to 2018.The spatio-temporal variation of vegetation was also examined.The results demonstrated that:(1)the unit area of ecosystem service values adjusted by vegetation cover(ESVVC)shows a gradient of forest>tea plantation>grassland>cropland,and the major ecosystem services provided by forests include soil formation and conservation,climate regulation,and biodiversity maintenance;(2)the ESV_(VC) increased to 2.1 billion yuan(The reference rate announced by the People’s Bank of China is the US dollar to 6.42 Yuan per dollar.)from 2000 to 2018.Higher and lower ESV_(VC) are predominant in the northwest and southeast region,respectively.In addition,changes of ecological protection structures and human disturbances negatively affected vegetation cover,leading to a decreased ESVVC from 2000 to 2005 in the Jiuqu Stream Ecological Protection Area and the Wuyishan National Scenic Spot.The implementation of ecological protection policies from 2010 to 2018 enhanced the ESV_(VC) in the study area;and,(3)the ESVVC is highest in the southeast and 25°–35°area with altitudes of 800–1000 m.Our model can provide timely and helpful information of changes in ESV for use in ecological corridor design and ecological security monitoring.