The current research of micro-grinding mainly focuses on the optimal processing technology for different materials. However, the material removal mechanism in micro-grinding is the base of achieving high quality proce...The current research of micro-grinding mainly focuses on the optimal processing technology for different materials. However, the material removal mechanism in micro-grinding is the base of achieving high quality processing surface. Therefore, a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography is proposed in this paper. The differences of material removal mechanism between convention grinding process and micro-grinding process are analyzed. Topography characterization has been done on micro-grinding tools which are fabricated by electroplating. Models of grain density generation and grain interval are built, and new predicting model of micro-grinding surface roughness is developed. In order to verify the precision and application effect of the surface roughness prediction model proposed, a micro-grinding orthogonally experiment on soda-lime glass is designed and conducted. A series of micro-machining surfaces which are 78 nm to 0.98 ~tm roughness of brittle material is achieved. It is found that experimental roughness results and the predicting roughness data have an evident coincidence, and the component variable of describing the size effects in predicting model is calculated to be 1.5x 107 by reverse method based on the experimental results. The proposed model builds a set of distribution to consider grains distribution densities in different protrusion heights. Finally, the characterization of micro-grinding tools which are used in the experiment has been done based on the distribution set. It is concluded that there is a significant coincidence between surface prediction data from the proposed model and measurements from experiment results. Therefore, the effectiveness of the model is demonstrated. This paper proposes a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography, which would provide significant research theory and experimental reference of material removal mechanism in micro-grinding of soda-lime glass.展开更多
Stress relaxation of glass is a dualism effect, it often lead to strength degradation in strengthened glass, but on the other hand, it improves the reliability and stress-uniformity of glasses. In this work, stress re...Stress relaxation of glass is a dualism effect, it often lead to strength degradation in strengthened glass, but on the other hand, it improves the reliability and stress-uniformity of glasses. In this work, stress relaxation of soda-lime glass was investigated using three-point bending tests at 400-560℃ which is near the brittle to ductile transition temperature, for enhancing the safety of glass productions and exploring the most economic anneal process. The experimental results show that the speed of stress relaxation increases but the ultimate stress decreases with increasing temperature. The stress uniformity of the glass samples before and after anneal was examined using spherical indentation at arranged testing points. It indicates that the scatter of the local strength measured by the Hertzian indentation is smaller in the anneal glass than in initial specimen, so that the estimated Weibull modulus for the anneal specimen is higher. Furthermore, the strength evaluation by Hertzian indentation and statistical analysis was presented.展开更多
For the technology of diamond cutting of optical glass, the high tool wear rate is a main reason for hindering the practical application of this technology. Many researches on diamond tool wear in glass cutting rest o...For the technology of diamond cutting of optical glass, the high tool wear rate is a main reason for hindering the practical application of this technology. Many researches on diamond tool wear in glass cutting rest on wear phenomenon describing simply without analyzing the genesis of wear phenomenon and interpreting the formation process of tool wear in mechanics. For in depth understanding of the tool wear and its effect on surface roughness in diamond cutting of glass, experiments of diamond turning with cutting distance increasing gradually are carried out on soda-lime glass. The wear morphology of rake face and flank face, the corresponding surface features of workpiece and the surface roughness, and the material compositions of flank wear area are detected. Experimental results indicate that the flank wear is predominant in diamond cutting glass and the flank wear land is characterized by micro-grooves, some smooth crater on the rake face is also seen. The surface roughness begins to increase rapidly, when the cutting mode changes from ductile to brittle for the aggravation of tool wear with the cutting distance over 150 m. The main mechanisms of inducing tool wear in diamond cutting of glass are diffusion, mechanical friction, thermo-chemical action and abrasive wear. The proposed research makes analysis and research from wear mechanism on the tool wear and its effect on surface roughness in diamond cutting of glass, and provides theoretical basis for minimizing the tool wear in diamond cutting brittle materials, such as optical glass.展开更多
Vertically-oriented graphene (VG) has many advantages over flat lying graphene, including a large surface area, exposed sharp edges, and non-stacking three-dimensional geometry. Recently, VG nanosheets assembled on ...Vertically-oriented graphene (VG) has many advantages over flat lying graphene, including a large surface area, exposed sharp edges, and non-stacking three-dimensional geometry. Recently, VG nanosheets assembled on specific substrates have been used for applications in supersensitive gas sensors and high-performance energy storage devices. However, to realize these intriguing applications, the direct growth of high-quality VG on a functional substrate is highly desired. Herein, we report the direct synthesis of VG nanosheets on traditional soda-lime glass due to its low-cost, good transparency, and compatibility with many applications encountered in daily life. This synthesis was achieved by a direct-current plasma enhanced chemical vapor deposition (dc-PECVD) route at 580℃, which is right below the softening point of the glass, and featured a scale-up size - 6 inches. Particularly, the fabricated VG nanosheets/glass hybrid materials at a transmittance range of 97%-34% exhibited excellent solarthermal performances, reflected by a 70%-130% increase in the surface temperature under simulated sunlight irradiation. We believe that this graphene glass hybrid material has great potential for use in future transparent "green-warmth" construction materials.展开更多
The physical process of forming a modified region in soda-lime glass was investigated using 1 kHz intense femtosecond laser pulses from a Ti: sapphire laser at 775 nm. Through the modifications in- duced by the femto...The physical process of forming a modified region in soda-lime glass was investigated using 1 kHz intense femtosecond laser pulses from a Ti: sapphire laser at 775 nm. Through the modifications in- duced by the femtosecond laser radiation using selective chemical etching techniques, we fabricated reproducible and defined microstructures and further studied their morphologies and etching prop- erties. Moreover, a possible physical mechanism for the femtosecond laser modification in soda-lime glass was proposed.展开更多
Filtering media is anything placed in a filter that changes the quality of water flowing through it.With the variety of media available,proper selection of filter media is of great importance for filter performance.Re...Filtering media is anything placed in a filter that changes the quality of water flowing through it.With the variety of media available,proper selection of filter media is of great importance for filter performance.Recycled glass is evaluated as an alternative to silica sand in media filters and is an effective medium with the advantages of lower cost than silica sand,more environmental friendliness as it is a recycled product,and ease to pulverize into different sizes for specific design requirements.However,the filtration efficiency of regenerated recycled glass is limited by the formation of biofilms on its surfaces due to the large number of microorganisms such as bacteria and algae existing in the water.In this study,hydrofluoric(HF)acid etched glass spheres(GSs)modified with polydopamine(PDA)and silver nanoparticles(PDA-AgHF/GSs)were fabricated on the surface of soda-lime GSs by HF etching,crystal in situ growth,and PDA coating.HF etching and the modification of PDA coating imparted good hydrophilicity to PDA-Ag-HF/GSs.The modification of the silver coating also rendered PDA-Ag-HF/GSs excellent antibacterial properties and reduced Chlorella adhesion,and inhibited microorganism growth ability by releasing Ag^+.The catechol functional group on the PDA coating could regulate the Ag^+release by chelation.Good antibacterial properties,anti-algae adhesion,and controlled release of Ag^+indicate that PDA-Ag-HF/GS coating can effectively inhibit the formation of biofilm on the surface of the material,providing a new strategy for the formation of anti-biofilm.展开更多
The diffusion property of sulfur on the soda-lime-silicate float glass surface was studied by using secondary ion mass spectroscopy(SIMS).According to the Fick's Second Law,two models of diffusion of sulfur on the ...The diffusion property of sulfur on the soda-lime-silicate float glass surface was studied by using secondary ion mass spectroscopy(SIMS).According to the Fick's Second Law,two models of diffusion of sulfur on the glass surface were built.When the diffusion of sulfate(S^6+) is considered uniquely,the concentration-depth profile of sulfur can not be fitted very well,especially on the top surfaces of the air side and tin side of float glass.So the diffusion of sulfide(S^2-) on the profile of sulfur can not be ignored.The concentration-depth profile of sulfur on both sides of glass can be fitted more exactly when both S^6+ and S^2- are considerd.Based on the above-mentioned fitting results,it is concluded that the diffusion coefficents of S^6+ and S^2- of tin side are larger than those of the air side.Moreover,the diffusion coefficents are related to the contacted medium.展开更多
To analyze the impact of bubbles on the mechanical behavior of glasses,by controlling the refining time,we prepared three borosilicate glasses with the same composition and different porosity.By the analysis software ...To analyze the impact of bubbles on the mechanical behavior of glasses,by controlling the refining time,we prepared three borosilicate glasses with the same composition and different porosity.By the analysis software integrated within the optical microscope,the diameter and number of the bubbles on the surface of three borosilicate glasses were quantified.From the hardness and crack initiation resistance(CR),we built the relationship between the porosity and the mechanical performance of these borosilicate glasses.展开更多
Damage to a glass surface by sandblasting has a remarkable effect on its mechanical properties and strength.In this study,we analyze the superficial deterioration of soda-lime glass and its influence on the mechanical...Damage to a glass surface by sandblasting has a remarkable effect on its mechanical properties and strength.In this study,we analyze the superficial deterioration of soda-lime glass and its influence on the mechanical strength.Sandblasting by gravitation from a fixed height causes damages by the free fall of different quantities of sand,which we performed for a selected grain size and at different angles of inclination.To characterize the surface state,we used different roughness measures(the arithmetic mean value of the roughness Ra,the root mean square roughness Rq,and the maximum roughness Rmax)and measured the optical transmission(transmittance)at different points on the specimen surface using a profilometer.To determine the mechanical strength,we proceeded by two methods:first,by a shock ball(falling ball),and then by biaxial bending using circular supports.The effects of the surface damage on the optical transmission and the mechanical strength of the glass are graphically presented and discussed in this paper.展开更多
The low-melting glass of Bi2O_(3)-B2O_(3)-SiO_(2)(BiBSi)system was used for the first time for laser sealing of vacuum glazing.Under the condition of constant boron content,how the structure and properties vary with B...The low-melting glass of Bi2O_(3)-B2O_(3)-SiO_(2)(BiBSi)system was used for the first time for laser sealing of vacuum glazing.Under the condition of constant boron content,how the structure and properties vary with Bi/Si ratio in low-melting glass was investigated.In addition,the relationships between laser power,low-melting glass solder with different Bi/Si ratios and laser sealing shear strength were revealed.The results show that a decrease in the Bi/Si ratio can cause a contraction of the glass network of the low-melting glass,leading to an increase of its characteristic temperature and a decrease of its coefficient of thermal expansion.During laser sealing,the copper ions in the low-melting glass play an endothermic role.A change in the Bi/Si ratio will affect the valence state transition of the copper ions in the low-melting glass.The absorbance of the low-melting glass does not follow the expected correlation with the Bi/Si ratio,but shows a linear correlation with the content of divalent copper ions.The greater the concentration of divalent copper ions,the greater the absorbance of the low-melting glass,and the lower the laser power required for laser sealing.The shear strength of the low melting glass solder after laser sealing was tested,and it was found that the maximum shear strength of Z1 glass sample was the highest up to 2.67 MPa.展开更多
In the present study,a novel method of surface finish improvement is proposed using shot blasting of soda lime(SBSL)beads on the Mg-AZ31 alloy.The effect of the soda blasting process parameters,such as blast pressure,...In the present study,a novel method of surface finish improvement is proposed using shot blasting of soda lime(SBSL)beads on the Mg-AZ31 alloy.The effect of the soda blasting process parameters,such as blast pressure,stand-off distance,and blast duration,have been studied in-response of material removal rate(MRR)and surface roughness(SR)and corresponding statistical models have been obtained.The multi-objective optimization has also been performed to obtain parameters for maximum MRR and minimum SR.The corrosion behavior of the treated specimens has been performed to study their in-vitro biodegradability in simulated body fluid(SBF)for 1,3,7,10,15,and 21 days.The wettability study of the SBSL treated samples has been investigated using sessile drop methodology.Further,cell adhesion test has also been performed to study the biocompatibility characteristics of the SBSL treated samples using Huh7 liver cell lines.Based on obtained quantitative data as well as scanning electron microscopy analysis of treated samples,the SBSL treatment of the AZ31 alloy has been found highly useful in producing biocompatibility surfaces along with desirable morphological features.展开更多
Lead-free low melting glasses,ZnO-CuO-Bi_(2)O_(3)-B_(2)O_(3)-SiO_(2)system,with fixed contents of 15 mol%CuO and 20 mol%Bi_(2)O_(3),were prepared by using melt cooling method.Structure and thermal properties of the gl...Lead-free low melting glasses,ZnO-CuO-Bi_(2)O_(3)-B_(2)O_(3)-SiO_(2)system,with fixed contents of 15 mol%CuO and 20 mol%Bi_(2)O_(3),were prepared by using melt cooling method.Structure and thermal properties of the glasses were studied by using X-ray diffractometer(XRD),infrared spectrometer(FIT-IR),thermal dilatometer and differential thermal analyzer(DTA).Chemical durability of the glasses was studied by using dissolution rate method.Wettability of glasses on substrate was tested by using button sintering experiment.It is found that alkaline resistance of the glass solders is lower than that of plate glass and the water resistance is comparable with that of plate glass.The sealing temperatures are Ts=445-490℃,while the average thermal expansion coefficient from room temperature to 300℃is in the range of(65-82)×10^(−7)℃^(−1).At sealing temperature,the glass solders have good wettability on plate glass or alumina substrate.They are not crystallized even sintered at the sealing temperature for 30 min.The solder glasses are suitable for sealing plate glass,alumina and other inorganic non-metallic materials.展开更多
In the present work,seven Mg-Zn-Ag alloys with the nominal composition of Mg_(96-x)Zn_(x)Ag_(4)(x=17,20,23,26,29,32,35 in at.%)were prepared by induction melting and single-roller melt-spinning.The X-ray diffraction(X...In the present work,seven Mg-Zn-Ag alloys with the nominal composition of Mg_(96-x)Zn_(x)Ag_(4)(x=17,20,23,26,29,32,35 in at.%)were prepared by induction melting and single-roller melt-spinning.The X-ray diffraction(XRD)analyses indicate the metallic glasses with three composition of Mg_(73)Zn_(23)Ag_(4),Mg_(70)Zn_(26)Ag_(4),and Mg_(67)Zn_(29)Ag_(4)were obtained successfully.The differential scanning calorimetry(DSC)measurement was used to obtain the characteristic temperature of Mg-Zn-Ag metallic glasses for the glass-forming ability analysis.The maximum glass transition temperature(Trg)was found to be 0.525 with a composition close to Mg_(67)Zn_(29)Ag_(4),which results in the best glass-forming ability.Moreover,the immersion test in simulated body fluid(SBF)demonstrate the relative homogeneous corrosion behavior of the Mg-Zn-Ag metallic glasses.The corrosion rate of Mg-Zn-Ag metallic glasses in SBF solution decreases with the increase of Zn content.The sample Mg_(67)Zn_(29)Ag_(4)has the lowest corrosion rate of 0.19mm/yr,which could meet the clinical application requirement well.The in vitro cell experiments show that the Madin-Darby canine kidney(MDCK)cells cultured in sample Mg_(67)Zn_(29)Ag_(4)and its extraction medium have higher activity.However,the Mg-Zn-Ag metallic glasses exhibit obvious inhibitory effect on human rhabdomyosarcoma(RD)tumor cells.The present investigations on the glass-forming ability,corrosion behavior,cytocompatibility and tumor inhibition function of the Mg-Zn-Ag based metallic glass could reveal their biomedical application possibility.展开更多
The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigate...The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigated.The current study aims to carry out a dynamic analysis on the sandwich beam when the impactor hits the top face sheet with an initial velocity.For the layer analysis,the high-order shear deformation theory(HSDT)and Frostig's second model for the displacement fields of the core layer are used.The classical non-adhesive elastic contact theory and Hunter's principle are used to calculate the dynamic responses in terms of time.In order to validate the analytical method,the outcomes of the current investigation are compared with those gained by the experimental tests carried out by other researchers for a rectangular composite plate subject to the LVI.Finite element(FE)simulations are conducted by means of the ABAQUS software.The effects of the parameters such as foam modulus,layer material,fiber angle,impactor mass,and its velocity on the generated voltage are reviewed.展开更多
The tephra layers in multiple sediment cores from the offshore region of the Mahanadi basin in the northern Bay of Bengal were investigated for possible volcanic sources. The glass shards from those tephra layers were...The tephra layers in multiple sediment cores from the offshore region of the Mahanadi basin in the northern Bay of Bengal were investigated for possible volcanic sources. The glass shards from those tephra layers were studied for size distribution, texture, and elemental geochemistry to establish chronostratigraphic markers for regional and global Quaternary correlation. The textural features of fine-grained(silty) volcanic glasses suggest the distal source of these tephra deposits. Major element composition with elevated SiO_(2) contents ranging between75%–76% and dominance of K_(2)O(> 4.5%) over CaO(< 0.9%) suggest ashes have originated from siliceous rhyolitic melts, similar to the petrographic composition of tephra from the Toba volcano. The bulk trace element compositions of the same glass shards were comparable with those reported in the youngest Toba tephra reported elsewhere. Likewise, the LREE-dominated chondrite normalized REE profiles of tephra from the Mahanadi basin closely resemble the characteristic REE patterns in Toba ash from other parts of the Indian Ocean and thus confirmed the contribution of the youngest Toba super-eruption for this ash layers.展开更多
A series of mixed alkali-zinc borosilicate glasses with various r values(r=molar ratio of[ZnO]/([R^(2)O]+[ZnO]))from 0.00 to 1.00 were fabricated to probe the mixed alkali-zinc effects on thermo-mechanical properties....A series of mixed alkali-zinc borosilicate glasses with various r values(r=molar ratio of[ZnO]/([R^(2)O]+[ZnO]))from 0.00 to 1.00 were fabricated to probe the mixed alkali-zinc effects on thermo-mechanical properties.The nonlinear evolution of glass transition temperature(T_(g))with the addition of ZnO is ascribed to the competition of two converse factors,i e,the T_(g)depression as one of the colligative properties for a solution,on the one hand,and the enhancement of T_(g)due to the higher field strength of zinc cations compared to that of alkali ions.However,the nonlinear evolution of elastic moduli and coefficients of thermal expansion with r is attributed to the variance of intermediate-range clusters,which is confirmed by infrared and Raman scattering spectra.These findings are very helpful in tailoring the performance of borosilicate glasses.展开更多
In a recent paper,advanced solid-state nuclear magnetic resonance(SSNMR)technology was employed to reveal the underlying mechanism contributing to the high hardness and exceptional resistance to fragmentation observed...In a recent paper,advanced solid-state nuclear magnetic resonance(SSNMR)technology was employed to reveal the underlying mechanism contributing to the high hardness and exceptional resistance to fragmentation observed in certain special glasses[1].This study utilized SSNMR to analyze the atomic-scale internal structure of glass,enabling the quantification of the fraction of three-coordinated oxygen([^((3))O]).The research findings demonstrate a quantitative relationship between[^((3))O]and the resistance of glass to crack initiation.展开更多
In order to develop the Mg-Zn-Ag metallic glasses(MGs)for biodegradable implant applications,the glass formation ability(GFA)and biocompatibility of Mg-Zn-Ag alloys were investigated using a combination of the calcula...In order to develop the Mg-Zn-Ag metallic glasses(MGs)for biodegradable implant applications,the glass formation ability(GFA)and biocompatibility of Mg-Zn-Ag alloys were investigated using a combination of the calculation of phase diagrams(CALPHAD)and experimental measurements.High GFA potentiality of two alloy series,specifically Mg_(96-x)Zn_xAg_(4)and Mg_(94-x)Zn_xAg_6(x=17,20,23,26,29,32,35),was predicted theoretically and then substantiated through experimental testing.X-ray diffraction(XRD)and differential scanning calorimetry(DSC)techniques were used to evaluate the crystallinity,GFA,and crystallization characteristics of these alloys.The results showed that compositions between Mg_(73)Zn_(23)Ag_(4)and Mg_(64)Zn_(32)Ag_(4)for Mg_(96-x)Zn_xAg_4,Mg_(66)Zn_(28)Ag_(6)and Mg_(63)Zn_(31)Ag_(6for)Mg_(94-x)Zn_xAg_(6)displayed a superior GFA.Notably,the GFA of the Mg_(96-x)Zn_xAg_(4)series was better than that of the Mg_(94-x)Zn_xAg_(6)series.Furthermore,the Mg_(70)Zn_(26)Ag_4,Mg_(74)Zn_(20)Ag_6,and Mg_(71)Zn_(23)Ag_(6)alloys showed acceptable corrosion rates,good cytocompatibility,and positive effects on cell proliferation.These characteristics make them suitable for applications in medical settings,potentially materials as biodegradable implants.展开更多
In this work,the structure,viscosity and ion-exchange process of Na_(2)O-MgO-Al_(2)O_(3)-SiO_(2) glasses with different Al_(2)O_(3)/SiO_(2) molar ratios were investigated.The results showed that,with increasing Al_(2)...In this work,the structure,viscosity and ion-exchange process of Na_(2)O-MgO-Al_(2)O_(3)-SiO_(2) glasses with different Al_(2)O_(3)/SiO_(2) molar ratios were investigated.The results showed that,with increasing Al_(2)O_(3)/SiO_(2) ratio,the simple structural units Q_(1) and Q_(2) transformed into highly aggregated structural units Q_(3) and Q_(4),indicating the increase of polymerization degree of glass network.Meanwhile,the coefficient of thermal expansion decreased from 9.23×10^(-6)℃^(-1) to 8.88×10^(-6)℃^(-1).The characteristic temperatures such as melting,forming,softening and glass transition temperatures increased with the increase of Al_(2)O_(3)/SiO_(2) ratio,while the glasses working temperature range became narrow.The increasing Al_(2)O_(3)/SiO_(2) ratio and prolonging ion-exchange time enhanced the surface compressive stress(CS)and depth of stress layer(DOL).However,the increase of ion exchange temperature increased the DOL and decreased the CS affected by stress relaxation.There was a good linear relationship between stress relaxation and surface compressive stress.Chemical strengthening significantly improved the hardness of glasses,which reached the maximum value of(622.1±10)MPa for sample with Al_(2)O_(3)/SiO_(2) ratio of 0.27 after heat treated at 410℃for 2 h.展开更多
基金supported by National Natural Science Foundation for Young Scholars of China(Grant No.51205053)National Natural Science Foundation of China(Grant No.51075064)
文摘The current research of micro-grinding mainly focuses on the optimal processing technology for different materials. However, the material removal mechanism in micro-grinding is the base of achieving high quality processing surface. Therefore, a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography is proposed in this paper. The differences of material removal mechanism between convention grinding process and micro-grinding process are analyzed. Topography characterization has been done on micro-grinding tools which are fabricated by electroplating. Models of grain density generation and grain interval are built, and new predicting model of micro-grinding surface roughness is developed. In order to verify the precision and application effect of the surface roughness prediction model proposed, a micro-grinding orthogonally experiment on soda-lime glass is designed and conducted. A series of micro-machining surfaces which are 78 nm to 0.98 ~tm roughness of brittle material is achieved. It is found that experimental roughness results and the predicting roughness data have an evident coincidence, and the component variable of describing the size effects in predicting model is calculated to be 1.5x 107 by reverse method based on the experimental results. The proposed model builds a set of distribution to consider grains distribution densities in different protrusion heights. Finally, the characterization of micro-grinding tools which are used in the experiment has been done based on the distribution set. It is concluded that there is a significant coincidence between surface prediction data from the proposed model and measurements from experiment results. Therefore, the effectiveness of the model is demonstrated. This paper proposes a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography, which would provide significant research theory and experimental reference of material removal mechanism in micro-grinding of soda-lime glass.
基金supported by the National Outstanding Young Scientist Foundation(No.50125204)National High Technical Research and Development Programme of China(No.A339010).
文摘Stress relaxation of glass is a dualism effect, it often lead to strength degradation in strengthened glass, but on the other hand, it improves the reliability and stress-uniformity of glasses. In this work, stress relaxation of soda-lime glass was investigated using three-point bending tests at 400-560℃ which is near the brittle to ductile transition temperature, for enhancing the safety of glass productions and exploring the most economic anneal process. The experimental results show that the speed of stress relaxation increases but the ultimate stress decreases with increasing temperature. The stress uniformity of the glass samples before and after anneal was examined using spherical indentation at arranged testing points. It indicates that the scatter of the local strength measured by the Hertzian indentation is smaller in the anneal glass than in initial specimen, so that the estimated Weibull modulus for the anneal specimen is higher. Furthermore, the strength evaluation by Hertzian indentation and statistical analysis was presented.
基金supported by National Natural Science Foundation of China(Grant No. 50775057)
文摘For the technology of diamond cutting of optical glass, the high tool wear rate is a main reason for hindering the practical application of this technology. Many researches on diamond tool wear in glass cutting rest on wear phenomenon describing simply without analyzing the genesis of wear phenomenon and interpreting the formation process of tool wear in mechanics. For in depth understanding of the tool wear and its effect on surface roughness in diamond cutting of glass, experiments of diamond turning with cutting distance increasing gradually are carried out on soda-lime glass. The wear morphology of rake face and flank face, the corresponding surface features of workpiece and the surface roughness, and the material compositions of flank wear area are detected. Experimental results indicate that the flank wear is predominant in diamond cutting glass and the flank wear land is characterized by micro-grooves, some smooth crater on the rake face is also seen. The surface roughness begins to increase rapidly, when the cutting mode changes from ductile to brittle for the aggravation of tool wear with the cutting distance over 150 m. The main mechanisms of inducing tool wear in diamond cutting of glass are diffusion, mechanical friction, thermo-chemical action and abrasive wear. The proposed research makes analysis and research from wear mechanism on the tool wear and its effect on surface roughness in diamond cutting of glass, and provides theoretical basis for minimizing the tool wear in diamond cutting brittle materials, such as optical glass.
文摘Vertically-oriented graphene (VG) has many advantages over flat lying graphene, including a large surface area, exposed sharp edges, and non-stacking three-dimensional geometry. Recently, VG nanosheets assembled on specific substrates have been used for applications in supersensitive gas sensors and high-performance energy storage devices. However, to realize these intriguing applications, the direct growth of high-quality VG on a functional substrate is highly desired. Herein, we report the direct synthesis of VG nanosheets on traditional soda-lime glass due to its low-cost, good transparency, and compatibility with many applications encountered in daily life. This synthesis was achieved by a direct-current plasma enhanced chemical vapor deposition (dc-PECVD) route at 580℃, which is right below the softening point of the glass, and featured a scale-up size - 6 inches. Particularly, the fabricated VG nanosheets/glass hybrid materials at a transmittance range of 97%-34% exhibited excellent solarthermal performances, reflected by a 70%-130% increase in the surface temperature under simulated sunlight irradiation. We believe that this graphene glass hybrid material has great potential for use in future transparent "green-warmth" construction materials.
文摘The physical process of forming a modified region in soda-lime glass was investigated using 1 kHz intense femtosecond laser pulses from a Ti: sapphire laser at 775 nm. Through the modifications in- duced by the femtosecond laser radiation using selective chemical etching techniques, we fabricated reproducible and defined microstructures and further studied their morphologies and etching prop- erties. Moreover, a possible physical mechanism for the femtosecond laser modification in soda-lime glass was proposed.
基金Supporting Program of SWUST(18LZX447)the biofilm research&innovation consortium from the College of Science and Engineering,Flinders University for supporting this research,respectively.
文摘Filtering media is anything placed in a filter that changes the quality of water flowing through it.With the variety of media available,proper selection of filter media is of great importance for filter performance.Recycled glass is evaluated as an alternative to silica sand in media filters and is an effective medium with the advantages of lower cost than silica sand,more environmental friendliness as it is a recycled product,and ease to pulverize into different sizes for specific design requirements.However,the filtration efficiency of regenerated recycled glass is limited by the formation of biofilms on its surfaces due to the large number of microorganisms such as bacteria and algae existing in the water.In this study,hydrofluoric(HF)acid etched glass spheres(GSs)modified with polydopamine(PDA)and silver nanoparticles(PDA-AgHF/GSs)were fabricated on the surface of soda-lime GSs by HF etching,crystal in situ growth,and PDA coating.HF etching and the modification of PDA coating imparted good hydrophilicity to PDA-Ag-HF/GSs.The modification of the silver coating also rendered PDA-Ag-HF/GSs excellent antibacterial properties and reduced Chlorella adhesion,and inhibited microorganism growth ability by releasing Ag^+.The catechol functional group on the PDA coating could regulate the Ag^+release by chelation.Good antibacterial properties,anti-algae adhesion,and controlled release of Ag^+indicate that PDA-Ag-HF/GS coating can effectively inhibit the formation of biofilm on the surface of the material,providing a new strategy for the formation of anti-biofilm.
基金Funded by National Natural Science Foundation of China(NSFC)(No.50972136)National Science and Technology S upporting P rogram(No.2015BAA02B00)+1 种基金National Key Technologies R&D Program(No.2016YFB0303900)the Fundamental Research Funds of State Key Laboratory for Advanced Technology of Float Glass
文摘The diffusion property of sulfur on the soda-lime-silicate float glass surface was studied by using secondary ion mass spectroscopy(SIMS).According to the Fick's Second Law,two models of diffusion of sulfur on the glass surface were built.When the diffusion of sulfate(S^6+) is considered uniquely,the concentration-depth profile of sulfur can not be fitted very well,especially on the top surfaces of the air side and tin side of float glass.So the diffusion of sulfide(S^2-) on the profile of sulfur can not be ignored.The concentration-depth profile of sulfur on both sides of glass can be fitted more exactly when both S^6+ and S^2- are considerd.Based on the above-mentioned fitting results,it is concluded that the diffusion coefficents of S^6+ and S^2- of tin side are larger than those of the air side.Moreover,the diffusion coefficents are related to the contacted medium.
基金Funded by the National Natural Science Foundation of China(No.52172007)。
文摘To analyze the impact of bubbles on the mechanical behavior of glasses,by controlling the refining time,we prepared three borosilicate glasses with the same composition and different porosity.By the analysis software integrated within the optical microscope,the diameter and number of the bubbles on the surface of three borosilicate glasses were quantified.From the hardness and crack initiation resistance(CR),we built the relationship between the porosity and the mechanical performance of these borosilicate glasses.
文摘Damage to a glass surface by sandblasting has a remarkable effect on its mechanical properties and strength.In this study,we analyze the superficial deterioration of soda-lime glass and its influence on the mechanical strength.Sandblasting by gravitation from a fixed height causes damages by the free fall of different quantities of sand,which we performed for a selected grain size and at different angles of inclination.To characterize the surface state,we used different roughness measures(the arithmetic mean value of the roughness Ra,the root mean square roughness Rq,and the maximum roughness Rmax)and measured the optical transmission(transmittance)at different points on the specimen surface using a profilometer.To determine the mechanical strength,we proceeded by two methods:first,by a shock ball(falling ball),and then by biaxial bending using circular supports.The effects of the surface damage on the optical transmission and the mechanical strength of the glass are graphically presented and discussed in this paper.
基金Funded by the National Natural Science Foundation of China(No.52472012)Opening Project of State Silica-Based Materials Laboratory of Anhui Province(No.2022KF11)the Research and Development of Glass Powder for Laser Sealing and Its Sealing Technology(No.K24556)。
文摘The low-melting glass of Bi2O_(3)-B2O_(3)-SiO_(2)(BiBSi)system was used for the first time for laser sealing of vacuum glazing.Under the condition of constant boron content,how the structure and properties vary with Bi/Si ratio in low-melting glass was investigated.In addition,the relationships between laser power,low-melting glass solder with different Bi/Si ratios and laser sealing shear strength were revealed.The results show that a decrease in the Bi/Si ratio can cause a contraction of the glass network of the low-melting glass,leading to an increase of its characteristic temperature and a decrease of its coefficient of thermal expansion.During laser sealing,the copper ions in the low-melting glass play an endothermic role.A change in the Bi/Si ratio will affect the valence state transition of the copper ions in the low-melting glass.The absorbance of the low-melting glass does not follow the expected correlation with the Bi/Si ratio,but shows a linear correlation with the content of divalent copper ions.The greater the concentration of divalent copper ions,the greater the absorbance of the low-melting glass,and the lower the laser power required for laser sealing.The shear strength of the low melting glass solder after laser sealing was tested,and it was found that the maximum shear strength of Z1 glass sample was the highest up to 2.67 MPa.
文摘In the present study,a novel method of surface finish improvement is proposed using shot blasting of soda lime(SBSL)beads on the Mg-AZ31 alloy.The effect of the soda blasting process parameters,such as blast pressure,stand-off distance,and blast duration,have been studied in-response of material removal rate(MRR)and surface roughness(SR)and corresponding statistical models have been obtained.The multi-objective optimization has also been performed to obtain parameters for maximum MRR and minimum SR.The corrosion behavior of the treated specimens has been performed to study their in-vitro biodegradability in simulated body fluid(SBF)for 1,3,7,10,15,and 21 days.The wettability study of the SBSL treated samples has been investigated using sessile drop methodology.Further,cell adhesion test has also been performed to study the biocompatibility characteristics of the SBSL treated samples using Huh7 liver cell lines.Based on obtained quantitative data as well as scanning electron microscopy analysis of treated samples,the SBSL treatment of the AZ31 alloy has been found highly useful in producing biocompatibility surfaces along with desirable morphological features.
基金National Natural Science Foundation of China(52172070)Jiangxi Provincial Natural Science Foundation(20242BAB25222)Jiangxi Provincial Graduate Innovation Special Fund Project(YC2022-S882 and YC2023-S808).
文摘Lead-free low melting glasses,ZnO-CuO-Bi_(2)O_(3)-B_(2)O_(3)-SiO_(2)system,with fixed contents of 15 mol%CuO and 20 mol%Bi_(2)O_(3),were prepared by using melt cooling method.Structure and thermal properties of the glasses were studied by using X-ray diffractometer(XRD),infrared spectrometer(FIT-IR),thermal dilatometer and differential thermal analyzer(DTA).Chemical durability of the glasses was studied by using dissolution rate method.Wettability of glasses on substrate was tested by using button sintering experiment.It is found that alkaline resistance of the glass solders is lower than that of plate glass and the water resistance is comparable with that of plate glass.The sealing temperatures are Ts=445-490℃,while the average thermal expansion coefficient from room temperature to 300℃is in the range of(65-82)×10^(−7)℃^(−1).At sealing temperature,the glass solders have good wettability on plate glass or alumina substrate.They are not crystallized even sintered at the sealing temperature for 30 min.The solder glasses are suitable for sealing plate glass,alumina and other inorganic non-metallic materials.
基金National Key Research and Development Program of China(2018YFC1106702)Guangdong Basic and Applied Basic Research Foundation(2020A1515011301,2019A1515110067 and 2020A1515110055)+1 种基金Shenzhen Basic Research Project(JCYJ20210324120001003,JCYJ20200109144608205 and JCYJ20200109144604020)IER Foundation(HT-JDCXY-201902 and HT-JD-CXY-201907)for financial support.
文摘In the present work,seven Mg-Zn-Ag alloys with the nominal composition of Mg_(96-x)Zn_(x)Ag_(4)(x=17,20,23,26,29,32,35 in at.%)were prepared by induction melting and single-roller melt-spinning.The X-ray diffraction(XRD)analyses indicate the metallic glasses with three composition of Mg_(73)Zn_(23)Ag_(4),Mg_(70)Zn_(26)Ag_(4),and Mg_(67)Zn_(29)Ag_(4)were obtained successfully.The differential scanning calorimetry(DSC)measurement was used to obtain the characteristic temperature of Mg-Zn-Ag metallic glasses for the glass-forming ability analysis.The maximum glass transition temperature(Trg)was found to be 0.525 with a composition close to Mg_(67)Zn_(29)Ag_(4),which results in the best glass-forming ability.Moreover,the immersion test in simulated body fluid(SBF)demonstrate the relative homogeneous corrosion behavior of the Mg-Zn-Ag metallic glasses.The corrosion rate of Mg-Zn-Ag metallic glasses in SBF solution decreases with the increase of Zn content.The sample Mg_(67)Zn_(29)Ag_(4)has the lowest corrosion rate of 0.19mm/yr,which could meet the clinical application requirement well.The in vitro cell experiments show that the Madin-Darby canine kidney(MDCK)cells cultured in sample Mg_(67)Zn_(29)Ag_(4)and its extraction medium have higher activity.However,the Mg-Zn-Ag metallic glasses exhibit obvious inhibitory effect on human rhabdomyosarcoma(RD)tumor cells.The present investigations on the glass-forming ability,corrosion behavior,cytocompatibility and tumor inhibition function of the Mg-Zn-Ag based metallic glass could reveal their biomedical application possibility.
文摘The dynamic responses and generated voltage in a curved sandwich beam with glass reinforced laminate(GRL)layers and a pliable core in the presence of a piezoelectric layer under low-velocity impact(LVI)are investigated.The current study aims to carry out a dynamic analysis on the sandwich beam when the impactor hits the top face sheet with an initial velocity.For the layer analysis,the high-order shear deformation theory(HSDT)and Frostig's second model for the displacement fields of the core layer are used.The classical non-adhesive elastic contact theory and Hunter's principle are used to calculate the dynamic responses in terms of time.In order to validate the analytical method,the outcomes of the current investigation are compared with those gained by the experimental tests carried out by other researchers for a rectangular composite plate subject to the LVI.Finite element(FE)simulations are conducted by means of the ABAQUS software.The effects of the parameters such as foam modulus,layer material,fiber angle,impactor mass,and its velocity on the generated voltage are reviewed.
基金We thank the Directors of CSIR-NIO and CSIR-NGRI,for supporting this studyThis work is a part of a multidisciplinary program under the aegis of the National Gas Hydrate Program(NGHP),India,on gas hydrate exploration in the Eastern continental margin of India.The incharge of IPEV operations is thanked for providing onboard technical support and facilities.This research was funded by MoES,Govt.of India.Mr.Girish Prabhu and Mr.Vijay Khedekar are thanked for XRD and SEM analyses,respectively.This is NIO contribution no.7047.
文摘The tephra layers in multiple sediment cores from the offshore region of the Mahanadi basin in the northern Bay of Bengal were investigated for possible volcanic sources. The glass shards from those tephra layers were studied for size distribution, texture, and elemental geochemistry to establish chronostratigraphic markers for regional and global Quaternary correlation. The textural features of fine-grained(silty) volcanic glasses suggest the distal source of these tephra deposits. Major element composition with elevated SiO_(2) contents ranging between75%–76% and dominance of K_(2)O(> 4.5%) over CaO(< 0.9%) suggest ashes have originated from siliceous rhyolitic melts, similar to the petrographic composition of tephra from the Toba volcano. The bulk trace element compositions of the same glass shards were comparable with those reported in the youngest Toba tephra reported elsewhere. Likewise, the LREE-dominated chondrite normalized REE profiles of tephra from the Mahanadi basin closely resemble the characteristic REE patterns in Toba ash from other parts of the Indian Ocean and thus confirmed the contribution of the youngest Toba super-eruption for this ash layers.
基金Funded by National Natural Science Foundation of China(No.52172007)the Ph D Program Fund of Non-Metallic Excellence and Innovation Center for Building Materials(No.2022SFP6-2)+1 种基金the Key Technology Innovation Project of Hubei Province(No.2022BAA025)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515010312)。
文摘A series of mixed alkali-zinc borosilicate glasses with various r values(r=molar ratio of[ZnO]/([R^(2)O]+[ZnO]))from 0.00 to 1.00 were fabricated to probe the mixed alkali-zinc effects on thermo-mechanical properties.The nonlinear evolution of glass transition temperature(T_(g))with the addition of ZnO is ascribed to the competition of two converse factors,i e,the T_(g)depression as one of the colligative properties for a solution,on the one hand,and the enhancement of T_(g)due to the higher field strength of zinc cations compared to that of alkali ions.However,the nonlinear evolution of elastic moduli and coefficients of thermal expansion with r is attributed to the variance of intermediate-range clusters,which is confirmed by infrared and Raman scattering spectra.These findings are very helpful in tailoring the performance of borosilicate glasses.
基金supported by the National Natural Science Foundation of China(42177444 and U1932218).
文摘In a recent paper,advanced solid-state nuclear magnetic resonance(SSNMR)technology was employed to reveal the underlying mechanism contributing to the high hardness and exceptional resistance to fragmentation observed in certain special glasses[1].This study utilized SSNMR to analyze the atomic-scale internal structure of glass,enabling the quantification of the fraction of three-coordinated oxygen([^((3))O]).The research findings demonstrate a quantitative relationship between[^((3))O]and the resistance of glass to crack initiation.
基金the financial supports from the Shenzhen Basic Research Project,China(No.JCYJ20170815153210359)the National Natural Science Foundation of China(No.12174210)。
文摘In order to develop the Mg-Zn-Ag metallic glasses(MGs)for biodegradable implant applications,the glass formation ability(GFA)and biocompatibility of Mg-Zn-Ag alloys were investigated using a combination of the calculation of phase diagrams(CALPHAD)and experimental measurements.High GFA potentiality of two alloy series,specifically Mg_(96-x)Zn_xAg_(4)and Mg_(94-x)Zn_xAg_6(x=17,20,23,26,29,32,35),was predicted theoretically and then substantiated through experimental testing.X-ray diffraction(XRD)and differential scanning calorimetry(DSC)techniques were used to evaluate the crystallinity,GFA,and crystallization characteristics of these alloys.The results showed that compositions between Mg_(73)Zn_(23)Ag_(4)and Mg_(64)Zn_(32)Ag_(4)for Mg_(96-x)Zn_xAg_4,Mg_(66)Zn_(28)Ag_(6)and Mg_(63)Zn_(31)Ag_(6for)Mg_(94-x)Zn_xAg_(6)displayed a superior GFA.Notably,the GFA of the Mg_(96-x)Zn_xAg_(4)series was better than that of the Mg_(94-x)Zn_xAg_(6)series.Furthermore,the Mg_(70)Zn_(26)Ag_4,Mg_(74)Zn_(20)Ag_6,and Mg_(71)Zn_(23)Ag_(6)alloys showed acceptable corrosion rates,good cytocompatibility,and positive effects on cell proliferation.These characteristics make them suitable for applications in medical settings,potentially materials as biodegradable implants.
基金Funded by National Natural Science Foundation of China(Nos.52172019 and 52072148)Shandong Provincial Youth Innovation Team Development Plan of Colleges and Universities(No.2022K1100)。
文摘In this work,the structure,viscosity and ion-exchange process of Na_(2)O-MgO-Al_(2)O_(3)-SiO_(2) glasses with different Al_(2)O_(3)/SiO_(2) molar ratios were investigated.The results showed that,with increasing Al_(2)O_(3)/SiO_(2) ratio,the simple structural units Q_(1) and Q_(2) transformed into highly aggregated structural units Q_(3) and Q_(4),indicating the increase of polymerization degree of glass network.Meanwhile,the coefficient of thermal expansion decreased from 9.23×10^(-6)℃^(-1) to 8.88×10^(-6)℃^(-1).The characteristic temperatures such as melting,forming,softening and glass transition temperatures increased with the increase of Al_(2)O_(3)/SiO_(2) ratio,while the glasses working temperature range became narrow.The increasing Al_(2)O_(3)/SiO_(2) ratio and prolonging ion-exchange time enhanced the surface compressive stress(CS)and depth of stress layer(DOL).However,the increase of ion exchange temperature increased the DOL and decreased the CS affected by stress relaxation.There was a good linear relationship between stress relaxation and surface compressive stress.Chemical strengthening significantly improved the hardness of glasses,which reached the maximum value of(622.1±10)MPa for sample with Al_(2)O_(3)/SiO_(2) ratio of 0.27 after heat treated at 410℃for 2 h.