期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Pomegranate-inspired porous SnSe/ZnSe@C anode:A stress-buffer nanostructure for fast and ultrastable sodium-ion storage 被引量:3
1
作者 Zhixin Liang Qinghua Li +7 位作者 Wang Zhang Dandan Yu Wei Zhang Jiawei Wu Gaoyu Wang Wenbo Fan Junling Wang Shaoming Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期369-377,I0010,共10页
Tin selenide(SnSe)is considered as a potential anode for sodium-ion batteries(SIBs)owing to its high theoretical specific capacity.Unfortunately,it suffers from drastic volume expansion/contraction during sodium ions ... Tin selenide(SnSe)is considered as a potential anode for sodium-ion batteries(SIBs)owing to its high theoretical specific capacity.Unfortunately,it suffers from drastic volume expansion/contraction during sodium ions insertion/extraction,resulting in poor cycling stability.Herein,a pomegranate-inspired porous carbon shell wrapped heterogeneous SnSe/ZnSe composite(SnSe/ZnSe@C)is exquisitely designed and fabricated through electrostatic spraying followed by high-temperature selenization.The polyacrylonitrile-derived carbon shell acts as an adhesive to link the porous cubic SnSe/ZnSe and form highly interconnected microcircuits to improve the electron/ion transfer efficiency and inhibit the bulk volume change of internal metallic selenide nanoparticles and polyselenides dissolution during repeated cycling.Moreover,the abundant heterostructure interface of SnSe/ZnSe further significantly accelerates the electrons/ions transport.As a result,the as-prepared SnSe/ZnSe@C electrode exhibits a high specific capacity(508.3 m Ah g^(-1)at 0.05 A g^(-1)),excellent rate performance(177.8 m Ah g^(-1)at 10.0 A g^(-1)),and remarkable cycling stability(195.9 m Ah g^(-1)after 10,000 cycles at 5.0 A g^(-1)).Furthermore,in-situ Xray diffraction(XRD)/Raman,ex-situ transmission electron microscopy,and kinetic analysis clearly reveal a four-step electrochemical reaction process and battery-capacitor dual-mode sodium storage mechanism.This work provides a new perspective for developing commercial SIBs anode materials with high capacity and long lifespan. 展开更多
关键词 SnSe Electrostatic spraying Carbon armor Superior cycling stability Sodium-ion batteries sodiation mechanism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部