期刊文献+
共找到78篇文章
< 1 2 4 >
每页显示 20 50 100
A comparative study for petroleum removal capacities of the bacterial consortia entrapped in sodium alginate,sodium alginate/poly(vinyl alcohol),and bushnell haas agar
1
作者 Sezen Bilen Ozyurek 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期705-715,共11页
The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different pol... The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different polymers such as Sodium Alginate(SA),Sodium Alginate/Poly(Vinyl Alcohol)(SA/PVA),and Bushnell Haas Agar(BHA).In addition to SA and SA/PVA,which are cost-effective,non-toxic and have different functional groups,BHA,which is frequently encountered in laboratory-scale studies but has not been used as an entrapment material until now.Based on these,the polymers with different surface morphologies and chemical compositions were analyzed by SEM and FT-IR.While the petroleum removal efficiency was higher with the entrapped bacterial consortia than with the free one,BHA-entrapped bacterial consortium enhanced the petroleum removal more than SA and SA/PVA.Accordingly,the degradation rate of bacterial consortia entrapped with BHA was 2.039 day^(-1),SA/PVA was 1.560,SA was 0.993,the half-life period of BHA-entrapped bacterial consortia is quite low(t_(1/2)=0.339)compared with SA(t_(1/2)=0.444)and SA/PVA(t_(1/2)=0.697).The effects of the four main factors such as:amount of BHA(0.5,1,1.5,2,2.5,3 g),disc size(4,5,6,7,8 mm),inoculum concentration(1,2.5,5,7.5,10 mL),and incubation period on petroleum removal were also investigated.The maximum petroleum removal(94.5%)was obtained at≥2.5 mL of bacterial consortium entrapped in 2 g BHA with a 7 mm disc size at 168 h and the results were also confirmed by statistical analysis.Although a decrease was observed during the reuse of bacterial consortium entrapped in BHA,the petroleum removal was still above 50%at 10th cycle.Based on GC-MS analysis,the removal capacity of BHA-entrapped consortium was over 90%for short-chain n-alkanes and 80%for medium-chain n-alkanes.Overall,the obtained data are expected to provide a potential guideline in cleaning up the large-scale oil pollution in the future.Since there has been no similar study investigating petroleum removal with the bacterial consortia entrapped with BHA,this novel entrapment material can potentially be used in the treatment of petroleum pollution in advanced remediation studies. 展开更多
关键词 Entrapment of bacterial consortia PETROLEUM RemovalBushnell Haas agar sodium alginate sodium alginate/poly(vinyl alcohol)
下载PDF
Constructing a biofunctionalized 3D-printed gelatin/sodium alginate/chitosan tri-polymer complex scaffold with improvised biological andmechanical properties for bone-tissue engineering
2
作者 Amit Kumar Singh Krishna Pramanik Amit Biswas 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期57-73,共17页
Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of... Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of this type of scaffold to make it a potential template for bone-tissue regeneration.We experimented with adding 0%–15%(volume fraction)gelatin(GE),a protein-based biopolymer known to promote cell adhesion,proliferation,and differentiation.The resulting tri-polymer complex was used as bioink to fabricate SA/CH/GEmatrices by three-dimensional(3D)printing.Morphological studies using scanning electron microscopy revealed the microfibrous porous architecture of all the structures,which had a pore size range of 383–419μm.X-ray diffraction and Fourier-transform infrared spectroscopy analyses revealed the amorphous nature of the scaffold and the strong electrostatic interactions among the functional groups of the polymers,thereby forming polyelectrolyte complexes which were found to improve mechanical properties and structural stability.The scaffolds exhibited a desirable degradation rate,controlled swelling,and hydrophilic characteristics which are favorable for bone-tissue engineering.The tensile strength improved from(386±15)to(693±15)kPa due to the increased stiffness of SA/CH scaffolds upon addition of gelatin.The enhanced protein adsorption and in vitro bioactivity(forming an apatite layer)confirmed the ability of the SA/CH/GE scaffold to offer higher cellular adhesion and a bone-like environment to cells during the process of tissue regeneration.In vitro biological evaluation including the MTT assay,confocal microscopy analysis,and alizarin red S assay showed a significant increase in cell attachment,cell viability,and cell proliferation,which further improved biomineralization over the scaffold surface.In addition,SA/CH containing 15%gelatin designated as SA/CH/GE15 showed superior performance to the other fabricated 3D structures,demonstrating its potential for use in bone-tissue engineering. 展开更多
关键词 SCAFFOLD Biomaterial sodium alginate CHITOSAN GELATIN 3D printing Tissue engineering
下载PDF
Preparation and release of curcumin/silk fibroin/sodium alginate film
3
作者 Yerong Yuan Jun’an Zheng +3 位作者 Zunchao Liu Wei Li Jiaqing Cao Xiangrong Zhang 《Journal of Polyphenols》 2024年第1期1-10,共10页
The aim of this study was to prepare silk fibroin/sodium alginate composite film containing curcumin by casting method.Orthogonal test was used to optimize the formulation according to the values of tensile strength a... The aim of this study was to prepare silk fibroin/sodium alginate composite film containing curcumin by casting method.Orthogonal test was used to optimize the formulation according to the values of tensile strength and elongation at break.The release of curcumin in the optimal film was studied in order to explore its application as wound dressing.The results showed that the optimum composition of curcumin/silk fibroin/sodium alginate composite film was as follows:Silk fibroin(70 mg/mL)2.7 g,sodium alginate(24 mg/mL)0.84 g,span 40(5.0 mg/mL)0.4 g,glycerol(3.75%,V/V)3 mL,curcumin(0.2 mg/mL)0.016 g.The optimum film showed the tensile strength and the elongation at break was(0.628±0.032)MPa and(0.794±0.046)%,respectively. 展开更多
关键词 CURCUMIN silk fibroin sodium alginate composite film
下载PDF
Preparation of sodium alginate gel microspheres catalysts and its high catalytic performance for treatment of ciprofloxacin wastewater
4
作者 Gaoyan Shao Jianjie Chen +4 位作者 Yuming Tu Feng Liu Zhiyong Zhou Shichao Tian Zhongqi Ren 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期158-170,共13页
The discharge of the antibiotic wastewater has increased dramatically in our country with the development of medical science and wide application of antibiotic,resulting in serious harm to human body and ecological en... The discharge of the antibiotic wastewater has increased dramatically in our country with the development of medical science and wide application of antibiotic,resulting in serious harm to human body and ecological environment.In this work,ciprofloxacin(CIP)was selected as one of typical antibiotics and heterogeneous Fenton-like catalysts were prepared for the treatment of ciprofloxacin wastewater.The sodium alginate(SA)gel microspheres catalysts were prepared by polymerization method using double metal ions of Fe^(3+)and Mn^(2+)as cross-linking agents.Preparation conditions such as metal ions concentration,mass fraction of SA,polymerization temperature and dual-metal ions as crosslinking agent were optimized.Moreover,the effects of operating conditions such as initial concentration of CIP,pH value and catalyst dosage on CIP removal were studied.The kinetic equation showed that the effect of the initial concentration of CIP on the degradation rate was in line with second-order kinetics,and the effects of catalyst dosage and pH value on the degradation rate of CIP were in line with first-order kinetics.The SA gel microspheres catalysts prepared by dual-metal ions exhibited a high CIP removal and showed a good reusability after six recycles.The SA gel microspheres catalysts with an easy recovery performance provided an economical and efficient method for the removal of antibiotics in the future. 展开更多
关键词 sodium alginate gel microspheres Heterogeneous Fenton-like catalysts Dual-metal ions Hydroxyl radical Ciprofloxacin wastewater
下载PDF
Efficacy of chitosan and sodium alginate scaffolds for repair of spinal cord injury in rats 被引量:11
5
作者 Zi-ang Yao Feng-jia Chen +3 位作者 Hong-li Cui Tong Lin Na Guo Hai-ge Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第3期502-509,共8页
Spinal cord injury results in the loss of motor and sensory pathways and spontaneous regeneration of adult mammalian spinal cord neurons is limited. Chitosan and sodium alginate have good biocompatibility, biodegradab... Spinal cord injury results in the loss of motor and sensory pathways and spontaneous regeneration of adult mammalian spinal cord neurons is limited. Chitosan and sodium alginate have good biocompatibility, biodegradability, and are suitable to assist the recovery of damaged tissues, such as skin, bone and nerve. Chitosan scaffolds, sodium alginate scaffolds and chitosan-sodium alginate scaffolds were separately transplanted into rats with spinal cord hemisection. Basso-Beattie-Bresnahan locomotor rating scale scores and electrophysiological results showed that chitosan scaffolds promoted recovery of locomotor capacity and nerve transduction of the experimental rats.Sixty days after surgery, chitosan scaffolds retained the original shape of the spinal cord. Compared with sodium alginate scaffolds- and chitosan-sodium alginate scaffolds-transplanted rats, more neurofilament-H-immunoreactive cells (regenerating nerve fibers) and less glial fibrillary acidic protein-immunoreactive cells (astrocytic scar tissue) were observed at the injury site of experimental rats in chitosan scaffold-transplanted rats. Due to the fast degradation rate of sodium alginate, sodium alginate scaffolds and composite material scaffolds did not have a supporting and bridging effect on the damaged tissue. Above all, compared with sodium alginate and composite material scaffolds, chitosan had better biocompatibility, could promote the regeneration of nerve fibers and prevent the formation of scar tissue,and as such, is more suitable to help the repair of spinal cord injury. 展开更多
关键词 nerve regeneration spinal cord injury CHITOSAN sodium alginate functional recovery SCAFFOLD neurofilament-H glial fibrillary acidic protein scar tissue locomotor capacity neural regeneration
下载PDF
Effect of Sodium Alginate Concentration on Membrane Strength and Permeating Property of Poly-l-arginine Group Microcapsule 被引量:3
6
作者 ShiBinWANG YuanGangLIU +1 位作者 LianJinWENG XiaoJunMA 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第7期849-852,共4页
A novel poly-/-arginine microcapsule was prepared due to its nutritional function and pharmacological efficacy. A high-voltage electrostatic droplet generator was used to make uniform microcapsules. The results show t... A novel poly-/-arginine microcapsule was prepared due to its nutritional function and pharmacological efficacy. A high-voltage electrostatic droplet generator was used to make uniform microcapsules. The results show that the membrane strength and permeating property are both remarkably affected with the changes of sodium alginate concentration. With the sodium alginate concentration increasing, gel beads sizes increase from 233μm to 350μm, release ratio is also higher at the same time, but the membrane strength decreases. 展开更多
关键词 Poly-l-arginine MICROCAPSULE sodium alginate membrane strength release.
下载PDF
Exploration of the enhanced performances for silk fibroin/sodium alginate composite coatings on biodegradable Mg-Zn-Ca alloy 被引量:3
7
作者 Hui Fang Chenxi Wang +3 位作者 Shicheng Zhou Ge Li Yanhong Tian Tadatomo Suga 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第5期1594-1610,共17页
To expand the future clinic applications of biodegradable magnesium alloy,polymer coatings with excellent biocompatibility are the keys to solve the local alkalinity and rapid hydrogen release.Natural-organic silk fib... To expand the future clinic applications of biodegradable magnesium alloy,polymer coatings with excellent biocompatibility are the keys to solve the local alkalinity and rapid hydrogen release.Natural-organic silk fibroin provides an approach to fabricate a protective coating on biomedical Mg-Zn-Ca alloy,however,the adhesion force and mechanical properties of the coating on substrates are ought to be further improved without any chemical conversion/intermediate layer.Hereby,based on VUV/O;surface activation,a hybrid of silk fibroin and sodium alginate is proposed to enhance the adhesion force and mechanical properties of the composite coatings on hydrophilic Mg-Zn-Ca alloy surfaces.Various mass ratios of sodium alginate addition were investigated to achieve the optimum coating strategy.The nanoscratch test and nanoindentation test confirmed that the adhesion force was tripled and mechanical properties index was significantly improved when the mass ratio of silk fibroin/sodium alginate was 70/30 compared to pure silk fibroin or sodium alginate coatings.Meanwhile,the corrosion rate of the coated Mg-Zn-Ca alloy was significantly delayed with the addition of sodium alginate,resulting in a reaction layer during corrosion process.Furthermore,the mechanisms for both adhesion and corrosion processes were discussed in detail.Our findings offer more possibilities for the controllable surface performance of degradable metals. 展开更多
关键词 Mg-Zn-Ca alloy Silk fibroin sodium alginate Adhesion force Mechanical property Corrosion resistance
下载PDF
Application of sodium alginate microspheres in ischemic stroke modeling in miniature pigs 被引量:2
8
作者 Yongchun Cui Yi Tian +7 位作者 Yue Tang Liujun Jia Aili Wu Peng Peng Jianzhong Yang Hong Du Xiaojuan Wang Like Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第16期1473-1480,共8页
The miniature pig is an optimal animal model for studying nervous system disease because of its physiologic and pathologic features. However, the rete mirabile composed of arteries and veins at the skull base limits t... The miniature pig is an optimal animal model for studying nervous system disease because of its physiologic and pathologic features. However, the rete mirabile composed of arteries and veins at the skull base limits their application as a model of ischemic stroke by middle cerebral artery occlusion. The present study investigated the possibility of establishing an ischemic stroke model in the miniature pig by blocking the skull base retia with sodium alginate microspheres. Three Bama miniature pigs were used. Using the monitor of C-arm X-ray machine, sodium aiginate microspheres (100-300 pm), a novel embolic material, were injected through the femoral artery, aortic arch, common carotid artery, ascending pharyngeal artery and the retia. Results were evaluated using carotid arteriography, MRI, behavior observation and histology. The unilateral rete mirabile was completely blocked, resulting in disturbance in blood supply to the basal ganglia, astasia of the dght hind limb and salivation. MRI and hematoxylin-eosin staining showed an evident infarction focus in the basal ganglia. These findings indicate that sodium alginate microspheres are a suitable embolic material for blocking the skull base retia in miniature pigs to establish an ischemic stroke models. 展开更多
关键词 neural regeneration brain injury stroke miniature pig sodium alginate microsphere basilar bloodvessels middle cerebral artery grants-supported paper NEUROREGENERATION
下载PDF
High-strength and self-degradable sodium alginate/polyacrylamide preformed particle gels for conformance control to enhance oil recovery 被引量:2
9
作者 Xiao Zhang Jia-Nan Deng +11 位作者 Kai Yang Qian Li Sen-Yao Meng Xiu-Xia Sun Zhao-Zheng Song Yong-Dong Tian Sui-An Zhang Xin-Jia Liu Zhan-Yi Wang Xin-Yu Liu Gui-Wu Lu Zi-Long Liu 《Petroleum Science》 SCIE CAS CSCD 2022年第6期3149-3158,共10页
Excess water production has become an important issue in the oil and gas extraction process.Preformed particle gels(PPGs),show the capability to control the conformance and reduce excess water cut.However,conventional... Excess water production has become an important issue in the oil and gas extraction process.Preformed particle gels(PPGs),show the capability to control the conformance and reduce excess water cut.However,conventional PPGs have poor mechanical properties and their swollen particles are easily damaged by shearing force when passing through the fractures in formations,meanwhile PPGs can be also degraded into various byproducts,leading to permanent damage to the reservoir permeability after temporary plugging.Herein,a novel type of dual cross-linked PPGs(dPPGs)was designed and synthesized using sodium alginate(SA)and acrylamide(AAm),cross-linked with N,N’-methylenebisacrylamide(MBA)and Fe^(3+).Results show that dPPGs have excellent mechanical properties with a storage modulus up to 86,445 Pa,which is almost 20 times higher than other reported PPGs.Meanwhile,dPPGs can be completely degraded into liquid without any solid residues or byproducts and the viscosity of dPPGs degraded liquid was found to be lower than 5 mPa·s.A laboratory coreflooding test showed that the plugging efficiency of dPPGs was up to 99.83%on open fractures.The obtained results demonstrated that dPPGs could be used as economical and environment-friendly temporary plugging agent with high-strength,self-degradation,thermal stability,and salt stability,thus making it applicable to a wide range of conformance control to enhance oil recovery. 展开更多
关键词 Conformance control sodium alginate Dual cross-linked Temporary plugging agent HIGH-STRENGTH Self-degradation
下载PDF
Curcumin encapsulated dual cross linked sodium alginate/montmorillonite polymeric composite beads for controlled drug delivery 被引量:2
10
作者 O.Sreekanth Reddy M.C.S.Subha +2 位作者 T.Jithendra C.Madhavi K.Chowdoji Rao 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2021年第2期191-199,共9页
The aim of the present work is fabrication of dual cross linked sodium alginate(SA)/montmorillonite(MMT) microbeads as a potential drug vehicle for extended release of curcumin(CUR). The microbeads were prepared using... The aim of the present work is fabrication of dual cross linked sodium alginate(SA)/montmorillonite(MMT) microbeads as a potential drug vehicle for extended release of curcumin(CUR). The microbeads were prepared using in situ ion-exchange followed by simple ionotropic gelation technique. The developed beads were characterized by Fourier transform infrared spectroscopy(FTIR), differential scanning calorimetry(DSC), thermogravimetric analysis(TGA), X-ray diffraction(X-RD) and scanning electron microscopy(SEM). The effect of MMT on encapsulation efficiency of CUR and intercalation kinetics was investigated. Dynamic swelling study and in vitro release study were investigated in simulated intestinal fluid(pH 7.4) and simulated gastric fluid(pH 1.2) at 37 ℃. Results suggested that both the swelling and in vitro release studies were influenced by the pH of test media, which might be suitable for intestinal drug delivery. The release mechanism was analyzed by fitting the release data into KorsmeyerPeppas equation. 展开更多
关键词 CURCUMIN sodium alginate MONTMORILLONITE MICROBEADS Drug delivery
下载PDF
Effect of formulation variables on in vitro release of a water-soluble drug from chitosanesodium alginate matrix tablets 被引量:2
11
作者 Liang Li Jinfeng Li +5 位作者 Shanshan Si Linlin Wang Chenjun Shi Yujiao Sun Zhenglin Liang Shirui Mao 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2015年第4期314-321,共8页
The objective of this study is to investigate the feasibility of using chitosanesodium alginate(CSeSA)based matrix tablets for extended-release of highly water-soluble drugs by changing formulation variables.Using tri... The objective of this study is to investigate the feasibility of using chitosanesodium alginate(CSeSA)based matrix tablets for extended-release of highly water-soluble drugs by changing formulation variables.Using trimetazidine hydrochloride(TH)as a water-soluble model drug,influence of dissolution medium,the amount of CSeSA,the CS:SA ratio,the type of SA,the type and amount of diluents,on in vitro drug release from CSeSA based matrix tablets were studied.Drug release kinetics and release mechanisms were elucidated.In vitro release experiments were conducted in simulated gastric fluid(SGF)followed by simulated intestinal fluid(SIF).Drug release rate decreased with the increase of CSeSA amount.CS:SA ratio had only slight effect on drug release and no influence of SA type on drug release was found.On the other hand,a large amount of water-soluble diluents could modify drug release profiles.It was found that drug release kinetics showed the best fit to Higuchi equation with Fickian diffusion as the main release mechanism.In conclusion,this study demonstrated that it is possible to design extended-release tablets of watersoluble drugs using CSeSA as the matrix by optimizing formulation components,and provide better understanding about drug release from CSeSA matrix tablets. 展开更多
关键词 CHITOSAN sodium alginate Matrix tablets Hydrophilic matrices Trimetazidine hydrochloride EXTENDED-RELEASE
下载PDF
Quantum Mechanical Analysis of Sodium Alginate Effects on the Konjac Glucomannan Stability 被引量:2
12
作者 MA Zhen PANG Jie +3 位作者 LIN Mei-Ling XIE Bing-Qing CHEN Han CHEN Jing-Ling 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2015年第8期1187-1196,共10页
Konjac glucomannan (KGM) and sodium alginate were chosen as the research objects, and the hydrogen bond conformation of compound system was studied with the molecular dynamics simulation, which simulated the energy ... Konjac glucomannan (KGM) and sodium alginate were chosen as the research objects, and the hydrogen bond conformation of compound system was studied with the molecular dynamics simulation, which simulated the energy variety in composite process. Combining with Hamiltonian in quantum mechanics calculation, the mechanism of hydrogen bond in KGM and sodium alginate compound system stability was analyzed from a micro angle. The results showed that, the hydrogen bonds occurring between the molecule of KGM and sodium alginate are in large number, and they mainly appeared between the -OH on C(6), C(3) in the mannose residues of KGM and C(2), C(3) of sodium alginate. The formation of hydrogen bonds results in the energy expectation value of the Hamiltonian thermal density matrix of the compound system to be negative, the energy of the system to decrease, and the compounds tending to form stable conformations. 展开更多
关键词 Konjac glucomannan sodium alginate COMPOSITE molecular dynamics QUANTUM
下载PDF
Synergistic Interaction and Gelation in Cationic Guar Gum-Sodium Alginate System 被引量:2
13
作者 HeDong-bao LiLi-hua LiQing YangXiao-zhen 《Wuhan University Journal of Natural Sciences》 EI CAS 2004年第3期371-374,共4页
The synergistic interaction between the cationic guar gum (the ammonium hydroxy-propyl-trimethyl chloride of guar gum) and sodium alginate has been studied. The effects of the mass ratio of them, mixed temperature, ba... The synergistic interaction between the cationic guar gum (the ammonium hydroxy-propyl-trimethyl chloride of guar gum) and sodium alginate has been studied. The effects of the mass ratio of them, mixed temperature, balk salt ion concentration, incubation time and pH value on gelation were investigated. It has been observed that there was a gel strength maximum when the mass ratio was 0.6, the mixed temperature was 70°C, the balk salt ion concentration was 1.0 mol·L?1, the incubation time was 30 min and the pH value was 8. Interaction between molecules of these two polysaccharides was investigated by FT-IR spectrometry. Key words cationic guar gum - sodium alginate - gelation - synergism CLC number O 629.12 Foundation item: Supported by the National Natural Science Foundation of China(29574173)Biography: He Dong-bao (1945-), male, Associate professor, research direction: modifying and gelating of natural polysaccharides. 展开更多
关键词 cationic guar gum sodium alginate GELATION synergism
下载PDF
Preparation and Properties of Polyacrylamide/Sodium Alginate Hydrogel and the Effect of Fe^(3+)Adsorption on Its Mechanical Performance 被引量:1
14
作者 Zheng Cao Yang Zhang +7 位作者 Keming Luo Yinqiu Wu Hongxin Gao Junfeng Cheng Chunlin Liu Guoliang Tao Qingbao Guan Lei Zhang 《Journal of Renewable Materials》 SCIE EI 2021年第8期1447-1462,共16页
The preparation and application of functional hydrogels based on natural polysaccharides have always been a hot research topic.In this study,using acrylamide(AM)monomer,N,N'-methylene bisacrylamide(MBA)as crosslin... The preparation and application of functional hydrogels based on natural polysaccharides have always been a hot research topic.In this study,using acrylamide(AM)monomer,N,N'-methylene bisacrylamide(MBA)as crosslinking agent,potassium persulfate(K2S2O8)as initiator,in the presence of natural polysaccharide sodium alginate(SA),the PAM/SA hydrogel was prepared by free radical polymerization.Fourier transform infrared spectroscopy(FT-IR),swelling performance tests,scanning electron microscope(SEM),thermogravimetric analysis(TGA),UV-visible spectrophotometer,mechanical property measurements were carried out to analyze the composition,morphology,and performance of the hydrogels.The swelling behavior,dye adsorption performance,and the mechanical properties of PAM/SA hydrogels before and after Fe^(3+)adsorption were studied.The experimental results showed that the introduction of SA with 4.7%,7.8%,and 10.3%effectively improved the mechanical and dye adsorption properties of PAM composite hydrogels.The adsorption capacity of PAM/4.7%SA and PAM/10.3%SA hydrogels at equilibrium can reach 40.01 and 44.02 mg/g for methylene blue,which is higher than the value 13.58 mg/g of pure PAM hydrogel.The compressive strength of pure PAM hydrogel is 0.124 MPa.When the SA content is 4.7%,7.8%,and 10.3%,the compressive strength of the PAM/SA hydrogel was corresponding to 0.130 MPa,0.134 MPa,and 0.152 MPa,respectively.Fe^(3+)was introduced into the PAM/SA hydrogels,and PAM/SA/Fe^(3+)double-network hydrogels with excellent mechanical properties could be prepared by adjusting the SA content(4.7%,7.8%,and 10.3%),soaking time(1 h,2 h,3 h,4 h,5 h,6 h),and Fe^(3+)concentration(4.76%,7.41%,9.09%,and 13.04%).Under the same Fe^(3+)concentration of 9.09%and adsorption time of 4 h,the compressive strengths of the PAM/4.7%SA,PAM/7.8%SA,and PAM/10.3%SA hydrogels could reach 0.354 MPa,0.767 MPa,and 0.778 MPa,respectively. 展开更多
关键词 sodium alginate ACRYLAMIDE HYDROGEL dye adsorption mechanical properties
下载PDF
Utilizing the γ-Irradiated Sodium Alginate as a Plant Growth Promoter for Enhancing the Growth,Physiological Activities,and Alkaloids Production in Catharanthus roseus L. 被引量:1
15
作者 Mohd Idrees Mohd Naeem +5 位作者 Masidur Alam Tariq Aftab Nadeem Hashmi Mohd Masroor Akhtar Khan Moinuddin Lalit Varshney 《Agricultural Sciences in China》 CAS CSCD 2011年第8期1213-1221,共9页
Sodium alginate is a polysaccharide that is largely obtained from the brown algae (Sargassum sp.).It has been used as a wonderful growth promoting substance in its depolymerized form for various plants.The aim of th... Sodium alginate is a polysaccharide that is largely obtained from the brown algae (Sargassum sp.).It has been used as a wonderful growth promoting substance in its depolymerized form for various plants.The aim of this study was to find out the effects of various concentrations of γ-irradiated sodium alginate (ISA),viz.,deionized water (control,T0),20 (T1),40 (T2),60 (T3),80 (T4),and 100 ppm (T5) on the agricultural performance of Catharanthus roseus L.(Rosea) in terms of growth attributes,photosynthesis,physiological activities,and alkaloid production.The present work revealed that ISA applied as leaf-sprays at concentrations from 20 to 100 ppm might improve growth,photosynthesis,physiological activities,and alkaloid production in C.roseus L.significantly.Of the various ISA concentrations,80 ppm proved to be the best one compared to other concentrations applied. 展开更多
关键词 γ-irradiated sodium alginate plant growth promoter chlorophyll and carotenoids content carbonic anhydrase and nitrate reductase activities growth attributes photosynthesis
下载PDF
Preparation and Properties of Nanocellulose/Sodium Alginate Composite Hydrogel 被引量:4
16
作者 Peiyi Li Ruiyan Liu +3 位作者 Haozhe Lei Miaomiao Zhou Boxing Jian Xinping Li 《Paper And Biomaterials》 CAS 2021年第4期38-46,共9页
Cellulose nanofiber(CNF)was isolated from Okara using deep eutectic solvent(DES)with high-speed stirring.The composite hydrogels obtained by using different proportions of CNF and sodium alginate(SA)had different prop... Cellulose nanofiber(CNF)was isolated from Okara using deep eutectic solvent(DES)with high-speed stirring.The composite hydrogels obtained by using different proportions of CNF and sodium alginate(SA)had different properties.The CNF/SA composite hydrogels were analyzed using Fourier transform infrared spectroscopy and scanning electron microscopy and tested for compression properties,rheological properties,water content,and swelling degree.Physical crosslinking between SA and Ca^(2+),and different degrees of hydrogen bond formation between SA and CNF were observed.The CNF/SA composite hydrogel have great potential as reinforcements in eco-friendly composite hydrogels for diverse applications. 展开更多
关键词 composite hydrogel cellulose nanofiber sodium alginate OKARA
下载PDF
Suppression of Radioactive Strontium Absorption by Sodium Alginate in Animals and Human Subjects 被引量:1
17
作者 GONG YIFENG, HUANG ZHAOJIAN, QIANG MEIYU, LAN FUXING,BAI GUANG, MAO YIXIAN MA XlNPEl AND ZHANG FENGGE The Institute of Radiation Medicine, Beijing, China and The Institute of Atomic Energy, Beijing, China 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 1991年第3期273-282,共10页
The effect of 23 sodium alginate preparations from different species of algae (Sargassum sp.) and kelp (Laminaria sp.) on reducing the absorption of strontium was studied in detail. A pilot production procedure has be... The effect of 23 sodium alginate preparations from different species of algae (Sargassum sp.) and kelp (Laminaria sp.) on reducing the absorption of strontium was studied in detail. A pilot production procedure has been established. Na alginate from S. siliquastrum was proven to be a potent agent for reducing Sr absorption, with high efficiency and virtually no toxicity. It reduced the body burden of strontium 3.3-4.2 fold in rats. Strontium absorption in human subjects was reduced by 78% ( ±8.9) or completely suppressed the increase of serum Sr at 2 h after ingestion of stable Sr in volunteers and decrease 24 h urine Sr to similar extent. No undesirable effects on gastrointestinal function was observed nor were Ca, Fe, Cu and Zn metabolism changed, both in the animal experiments and in human. It was concluded that alginate preparations derived from Sargassum species are a suitable antidote against radiostrontium absorption on a long-term basis, when added to bread at a 6% level. In cases of emergency, an alginate syrup preparation appears to be more suitable because of its rapid action. 展开更多
关键词 Suppression of Radioactive Strontium Absorption by sodium alginate in Animals and Human Subjects
下载PDF
Swelling Performance Studies of Acrylamide/Potassium 3-Sulfopropyl Methacrylate/Sodium Alginate/Bentonite Biohybrid Sorbent Hydrogels in Binary Mixtures of Water-Solvent 被引量:1
18
作者 Erdener Karadag Z.Deniz Kasim Oztürk +2 位作者 Ö mer Baris Uzüm Semiha Kundakci 《Journal of Encapsulation and Adsorption Sciences》 2019年第1期35-61,共27页
In this study, it was to investigate the swelling performance of novel biohybrid composite hydrogel sorbents containing acrylamide/potassium 3-sulfopropyl methacrylate/sodium alginate/bentonite in water and binary mix... In this study, it was to investigate the swelling performance of novel biohybrid composite hydrogel sorbents containing acrylamide/potassium 3-sulfopropyl methacrylate/sodium alginate/bentonite in water and binary mixtures of water-solvent. Novel hydrogels were synthesized with free radical solution polymerization by using ammonium persulfate/N,N,N’,N’-tetramethylethylenediamine as redox initiating pair in presence of poly(ethylene glycol) diacrylate as crosslinker. Swelling experiments were performed in water and binary mixtures of water-solvent (acetone, methanol and tetrahydrofuran) at 25°C, gravimetrically. Some swelling and diffusion properties of the hydrogels were calculated and they were discussed for the biohybrid/hybrid hydrogel systems prepared under various formulations. It has been seen the lower equilibrium percentage swelling ratio values (62% - 124%) in all solvent compositions in comparison with the equilibrium percentage swelling ratio values in water (718% - 2055%). Consequently, the hydrogel systems developed in this study could serve as a potential device for water and water-solvent binary mixtures. 展开更多
关键词 Acrylamide/Potassium 3-Sulfopropyl Methacrylate Biohybrid Hydrogel SWELLING sodium alginate BENTONITE Water-Solvent Binary Mixtures
下载PDF
Sodium alginate and naloxone loaded macrophage-derived nanovesicles for the treatment of spinal cord injury
19
作者 Xiaoyao Liu Xue Jiang +4 位作者 Qi Yua Wenwen Shen He Tian Xifan Mei Chao Wu 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2022年第1期87-101,共15页
Spinal cord injury(SCI)causes Ca^(2+) overload,which can lead to inflammation and neuronal apoptosis.In this study,we prepared a nanovesicle derived from macrophage membrane(MVs),which encapsulated sodium alginate(SA)... Spinal cord injury(SCI)causes Ca^(2+) overload,which can lead to inflammation and neuronal apoptosis.In this study,we prepared a nanovesicle derived from macrophage membrane(MVs),which encapsulated sodium alginate(SA)and naloxone(NAL)to inhibit inflammation and protect neurons by reducing the free Ca^(2+) concentration at the SCI site.Based on the transmission electron microscopy(TEM)image,the encapsulated sample(NAL–SA–MVs)had a particle size of approximately 134±11 nm and exhibited a sustained release effect.The encapsulation rate of NAL and SA was 82.07%±3.27%and 72.13%±2.61%in NAL–SA–MVs,respectively.Targeting tests showed that the NAL–SA–MVs could accumulate in large quantities and enhance the concentration of SA and NAL at the lesion sites.In vivo and in vitro studies indicated that the NAL–SA–MVs could decrease the concentration of free Ca^(2+),which should further alleviate the inflammatory response and neuronal apoptosis.Anti-inflammation results demonstrated that the NAL–SA–MVs could reduce the pro-inflammation factors(iNOS,TNF-α,IL-1β,IL-6)and increase the expression of antiinflammation factors(IL-10)at the cell and animal level.Concurrently,fluorescence,flow cytometry and western blot characterization showed that the apoptotic condition of the neurons was significantly inhibited.In addition,the motor function of C57 mice were significantly improved after NAL–SA–MVs treatment.In conclusion,it is suggested that the NAL–SA–MVs has tremendous potential in the treatment of SCI. 展开更多
关键词 NALOXONE sodium alginate Spinal cord injury Macrophage membrane Inflammation NEUROPROTECTION
下载PDF
Enhanced biological wastewater treatment using sodium alginate-immobilized microorganisms in a fluidized bed reactor
20
作者 Yaneth A.Bustos-Terrones Erick R.Bandala +1 位作者 Gabriela E.Moeller-Chávez Victoria Bustos-Terrones 《Water Science and Engineering》 EI CAS CSCD 2022年第2期125-133,共9页
In this study,a microbial consortium isolated from an activated sludge tank of a conventional wastewater treatment plant was immobilized using sodium alginate(SA)as a support material for contaminant biodegradation in... In this study,a microbial consortium isolated from an activated sludge tank of a conventional wastewater treatment plant was immobilized using sodium alginate(SA)as a support material for contaminant biodegradation in wastewater.A volume of 500 mL of activated sludge was immobilized in the SA beads(with a mass concentration of 25 g/L).The resulting SA beads were characterized,introduced into a fluidized bed reactor,fed with 1000 mL of the sample,and characterized again after the treatment process.The SA-immobilized microorganisms were tested first for degradation of organic matter(expressed as chemical oxygen demand)and total phosphorous in domestic wastewater,achieving removal efficiencies of 71%and 93%,respectively,after 12 h.Subsequently,the SA-immobilized microorganisms were tested for degradation of a basic blue 9(BB9)textile dye in a condition that simulated textile wastewater.The efficiency of the BB9 degradation was found to be as high as 99.5%after 2 h.According to these results,SA-immobilized microorganisms were found to be an environmentally friendly and cost-effective alternative for treatment of municipal and industrial wastewater effluents. 展开更多
关键词 Domestic wastewater Basic blue 9 Immobilized microorganisms Fluidized bed reactor sodium alginate
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部