An adsorbent, Na1.6Al0.6Ti1.4(PO4)3 (or NATP), was prepared by controlled crystallization of glasses in the Na2O-Al2O3-CaO-TiO2-P2O5 system. The crystalline phases characterized by X-ray diffraction (XRD) show t...An adsorbent, Na1.6Al0.6Ti1.4(PO4)3 (or NATP), was prepared by controlled crystallization of glasses in the Na2O-Al2O3-CaO-TiO2-P2O5 system. The crystalline phases characterized by X-ray diffraction (XRD) show that the sample glasses crystallizes into two phases, i.e. NATP and Ca9Al(PO4)7, while the Ca9Al(PO4)7 phase can be leached selectively with HCl, leaving a massive number of pores in the material. Through the experimental research, the effects of contact time, solution pH, and the initial concentration of Na+on the cation exchange properties were investigated. The batch sorption kinetics and equilibria can be described by Pseudo-second-order kinetic equations and Langmuir isotherm equations respectively. Furthermore, the experiments with an industrial solution show that the removal rate of sodium from industrial (NH4)2WO4 is higher than 97%. Cycle experiment also shows that the NATP has a good cyclic performance.展开更多
Background It has been argued that the benefits of reducing sodium loading may be offset by increased activation of the renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system. This study aimed to...Background It has been argued that the benefits of reducing sodium loading may be offset by increased activation of the renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system. This study aimed to investigate the long-term effects of an increase in dialysis sodium removal on circulating RAAS and sympathetic system in hypertensive hemodialysis (HD) patients with "normal" post-HD volume status. Methods Thirty hypertensive HD patients were enrolled in this pilot trial. After one month period of dialysis with standard dialysate sodium of 138 mmol/L, the patients were followed up for a four months period with dialysate sodium set at 136 retool/L, without changes in instructions regarding dietary sodium control. During the period of study, the dry weight was adjusted monthly under the guidance of bioimpedance spectroscopy to maintain post-HD volume status in a steady state; 44-hour ambulatory blood pressure, plasma renin, angiotensin II (Ang II), aldosterone, and norepinephrine (NE) were measured. Results After four months of HD with low dialysate sodium of 136 mmol/L, 44-hour systolic and diastolic blood pressures (BPs) were significantly lower (-10 and -6 mmHg), in the absence of changes in antihypertensive medications. No significant changes were observed in plasma renin, Ang II, aldosterone, and NE concentrations. The post-HD volume parameters were kept constant. Conclusion Mildly increasing dialysis sodium removal over 4 months can significantly improve BP control and does not activate circulating RAAS and sympathetic nervous system in hypertensive HD patients. Chin Med J 2014;127 (14): 2628-2631展开更多
基金Project(2012AA063205)supported by the High-tech Research and Development Program of China
文摘An adsorbent, Na1.6Al0.6Ti1.4(PO4)3 (or NATP), was prepared by controlled crystallization of glasses in the Na2O-Al2O3-CaO-TiO2-P2O5 system. The crystalline phases characterized by X-ray diffraction (XRD) show that the sample glasses crystallizes into two phases, i.e. NATP and Ca9Al(PO4)7, while the Ca9Al(PO4)7 phase can be leached selectively with HCl, leaving a massive number of pores in the material. Through the experimental research, the effects of contact time, solution pH, and the initial concentration of Na+on the cation exchange properties were investigated. The batch sorption kinetics and equilibria can be described by Pseudo-second-order kinetic equations and Langmuir isotherm equations respectively. Furthermore, the experiments with an industrial solution show that the removal rate of sodium from industrial (NH4)2WO4 is higher than 97%. Cycle experiment also shows that the NATP has a good cyclic performance.
文摘Background It has been argued that the benefits of reducing sodium loading may be offset by increased activation of the renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system. This study aimed to investigate the long-term effects of an increase in dialysis sodium removal on circulating RAAS and sympathetic system in hypertensive hemodialysis (HD) patients with "normal" post-HD volume status. Methods Thirty hypertensive HD patients were enrolled in this pilot trial. After one month period of dialysis with standard dialysate sodium of 138 mmol/L, the patients were followed up for a four months period with dialysate sodium set at 136 retool/L, without changes in instructions regarding dietary sodium control. During the period of study, the dry weight was adjusted monthly under the guidance of bioimpedance spectroscopy to maintain post-HD volume status in a steady state; 44-hour ambulatory blood pressure, plasma renin, angiotensin II (Ang II), aldosterone, and norepinephrine (NE) were measured. Results After four months of HD with low dialysate sodium of 136 mmol/L, 44-hour systolic and diastolic blood pressures (BPs) were significantly lower (-10 and -6 mmHg), in the absence of changes in antihypertensive medications. No significant changes were observed in plasma renin, Ang II, aldosterone, and NE concentrations. The post-HD volume parameters were kept constant. Conclusion Mildly increasing dialysis sodium removal over 4 months can significantly improve BP control and does not activate circulating RAAS and sympathetic nervous system in hypertensive HD patients. Chin Med J 2014;127 (14): 2628-2631