Femtocell networks have emerged as a key technology in residential, office building or hotspot deployments that can sig- nificantly fulfill high data demands in order to offioad indoor traffic from outdoor macro cells...Femtocell networks have emerged as a key technology in residential, office building or hotspot deployments that can sig- nificantly fulfill high data demands in order to offioad indoor traffic from outdoor macro cells. However, as one of the major challenges, inter-femtocell interference gets worse in 3D in-building scenarios because of the presence of numerous interfering sources and then needs to be considered in the early network planning phase. The indoor network planning and optimization tool suite, Ranplan Small- cell~, makes accurate prediction of indoor wireless RF signal propagation possible to guide actual indoor femtocell deployments. In this paper, a new adaptive soft frequency reuse scheme in the dense femtocell networks is proposed, where multiple dense femtocells are classified into a number of groups according to the dominant interference strength to others, then the minimum subchannels with different frequency reuse factors for these groups are determined and transmit powers of the group- ing sub-channels are adaptively adjusted based on the strength to mitigate the mutual inter- ference. Simulation results show the proposed scheme yields great performance gains in terms of the spectrum efficiency relative to the legacy soft frequency reuse and universal fre- quency reuse.展开更多
A soft fractional frequency reuse scheme is proposed to fulfill full frequency reuse for the 4G mobile communications system. This scheme can be implemented in three types,and using what type of the scheme can be deci...A soft fractional frequency reuse scheme is proposed to fulfill full frequency reuse for the 4G mobile communications system. This scheme can be implemented in three types,and using what type of the scheme can be decided during practical applications,depending on the link gain of the physical layer. The implementation of soft fractional frequency reuse in one of the three types is studied. The study results show that the frequency reuse factor of this scheme may reach 1/3-1. The simplified form of this scheme has been successfully applied in the 4G experimental network in Shanghai ,and provides a way to fulfill full frequency reuse in systems.展开更多
基金supported by the EU-FP7 iPLAN under Grant No.230745EU-FP7 IAPP@RANPLAN under Grant No.218309
文摘Femtocell networks have emerged as a key technology in residential, office building or hotspot deployments that can sig- nificantly fulfill high data demands in order to offioad indoor traffic from outdoor macro cells. However, as one of the major challenges, inter-femtocell interference gets worse in 3D in-building scenarios because of the presence of numerous interfering sources and then needs to be considered in the early network planning phase. The indoor network planning and optimization tool suite, Ranplan Small- cell~, makes accurate prediction of indoor wireless RF signal propagation possible to guide actual indoor femtocell deployments. In this paper, a new adaptive soft frequency reuse scheme in the dense femtocell networks is proposed, where multiple dense femtocells are classified into a number of groups according to the dominant interference strength to others, then the minimum subchannels with different frequency reuse factors for these groups are determined and transmit powers of the group- ing sub-channels are adaptively adjusted based on the strength to mitigate the mutual inter- ference. Simulation results show the proposed scheme yields great performance gains in terms of the spectrum efficiency relative to the legacy soft frequency reuse and universal fre- quency reuse.
基金the National Natural Science Foundation of China under Grant 60496312863 Program of China under Grants 2003AA12331004 and 2006AA01Z260.
文摘A soft fractional frequency reuse scheme is proposed to fulfill full frequency reuse for the 4G mobile communications system. This scheme can be implemented in three types,and using what type of the scheme can be decided during practical applications,depending on the link gain of the physical layer. The implementation of soft fractional frequency reuse in one of the three types is studied. The study results show that the frequency reuse factor of this scheme may reach 1/3-1. The simplified form of this scheme has been successfully applied in the 4G experimental network in Shanghai ,and provides a way to fulfill full frequency reuse in systems.