期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Technical Analysis of Exoskeleton Robot
1
作者 Sungjun Yeem Jinyeong Heo +1 位作者 Hongchul Kim Yongjin Kwon 《World Journal of Engineering and Technology》 2019年第1期68-79,共12页
Recently, the need for exoskeleton robots has been increased due to the advancement of robotic technologies and changes in the concept of how the robots can be utilized in direct contact with human bodies. The robots,... Recently, the need for exoskeleton robots has been increased due to the advancement of robotic technologies and changes in the concept of how the robots can be utilized in direct contact with human bodies. The robots, once only used on the factory floor, are now becoming a part of human bodies, which provides the unprecedented level of muscle power boost and the increase of running speed. If used very carefully, the exoskeleton robots can be also used for patients’ rehabilitation. The exoskeleton robots have many potential application areas;?hence most advanced countries are currently developing various types of exoskeleton robots. Those robots can be classified into two major categories, namely the rigid type and the soft type. Each type has own advantages and disadvantages, while the carrying load capacity and the actuation speed can be quite different. There are also many technical difficulties in order to use the exoskeleton robots in the field. The aim of this study is, therefore, to introduce the trends of exoskeleton robot development in advanced countries, while providing the analysis on the technical merits and downside of robot types. The comparison chart also indicates the major technical directions, in which the future technology will be headed for, such as the improved robot response characteristics by employing advanced sensors and artificial intelligence. The robots are becoming smarter, lighter, and more powerful. It is foreseeable that the wearable robots can be a part of human life in the very near future. 展开更多
关键词 EXOSKELETON robot WEARABLE robot RIGID type robot soft type robot Artificial MUSCLE
下载PDF
柔性仿生驱动器研究综述 被引量:13
2
作者 吴枫 韩亚丽 +2 位作者 李沈炎 糜章章 周伟杰 《现代制造工程》 CSCD 北大核心 2020年第7期146-156,共11页
随着软体机器人的快速发展,面向软体机器人的柔性仿生驱动器的研究成为研究的热点,对现有的相关理论成果进行分析和总结,对当前柔性仿生驱动器的关键技术进行分析,并对未来的发展趋势进行展望,以促进柔性仿生驱动器的研究进一步发展。首... 随着软体机器人的快速发展,面向软体机器人的柔性仿生驱动器的研究成为研究的热点,对现有的相关理论成果进行分析和总结,对当前柔性仿生驱动器的关键技术进行分析,并对未来的发展趋势进行展望,以促进柔性仿生驱动器的研究进一步发展。首先,综述了柔性仿生驱动器类型,包括气动驱动器、形状记忆材料驱动器以及电活性聚合物驱动器等;其次,从仿生材料、本体机构设计和制造技术、运动学和动力学建模及驱动器的控制策略4个方面对柔性仿生驱动器存在的技术难点进行分析;最后对未来发展趋势进行构想。 展开更多
关键词 柔性仿生驱动器 软体机器人 驱动类型 仿生材料
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部