Interfacial bonding in as deposited and annealed Co/C soft X ray multilayer structures is investigated by X ray photo electron spectroscopy (XPS).It is found that there is interdiffusion between cobalt and carbon ...Interfacial bonding in as deposited and annealed Co/C soft X ray multilayer structures is investigated by X ray photo electron spectroscopy (XPS).It is found that there is interdiffusion between cobalt and carbon in the as deposited Co/C multilayers,and this is confirmed by structure characterization using low angle X ray diffraction (LAXD).The calculation of the chemical shifts in Co C system based on Miedemas macroscopic atom model suggests that it is impossible to detect the chemical shift experimentally in the Co C compound,which is consistent with the XPS results.The presence of metallic carbide bonding is evidenced through the nature of the carbon bonding in survey taken at Co C and C Co interfaces of annealed samples.Our results also indicate that XPS is a direct method to probe the chemical bonding at the interfaces.展开更多
The demand to enhance the optical resolution, to structure and observe ever smaller details, has pushed the way towards the EUV and soft X-rays. Induced mainly by the production of more powerful electronic circuits wi...The demand to enhance the optical resolution, to structure and observe ever smaller details, has pushed the way towards the EUV and soft X-rays. Induced mainly by the production of more powerful electronic circuits with the aid of projection lithography, optics developments in recent years can be characterized by the use of electromagnetic radiation with smaller wavelength. The good prospects of the EUV and soft X-rays for next generation lithography systems (λ=13.5 nm), microscopy in the “water window” (λ=2.3~4.4 nm), astronomy (λ=5~31 nm), spectroscopy, plasma diagnostics and EUV/soft X-ray laser research have led to considerable progress in the development of different multilayer optics. Since optical systems in the EUV/soft X-ray spectral region consist of several mirror elements a maximum reflectivity of each multilayer is essential for a high throughput. This paper covers recent results of the enhanced spectral behavior of Mo/Si, Cr/Sc and Sc/Si multilayer optics.展开更多
A new interferometer for extreme ultraviolet (EUV) radiation with a laser produced plasma (LPP) laboratory source is under construction. The LPP source is operated with a Sn solid rod target on which pulsed YAG laser ...A new interferometer for extreme ultraviolet (EUV) radiation with a laser produced plasma (LPP) laboratory source is under construction. The LPP source is operated with a Sn solid rod target on which pulsed YAG laser is focused to produce high temperature plasma emitting EUV radiation. The source is equipped with a newly designed debris stopper protecting a condenser multilayer mirror from the particle debris of the target. The condenser mirror focuses the light onto an EUV beam-splitter to form transmitted and reflected paths for producing interference fringes of a sharing type. The optical configuration is of a common path based on a triangular path type with a focusing at the beam-splitter, which is enabled to produce fringes by a low coherence radiation with a standard optical quality beam-splitter. The fringes are recorded by an imaging plate with pixels as small as 25μm. The dynamic range of linearity in detection of the EUV light was found to be more than 10 4 with sensitivity of 10 4 photons/pixel, enough for the purpose of interferogram recording, possibly with one laser shot.展开更多
Modulation structure stability of Co/C and CoN/CN soft X ray multilayers has been investigated by X ray diffraction and Raman spectroscopy. The graphitization of the amorphous carbon layers in Co/C multilayers causes ...Modulation structure stability of Co/C and CoN/CN soft X ray multilayers has been investigated by X ray diffraction and Raman spectroscopy. The graphitization of the amorphous carbon layers in Co/C multilayers causes a period expansion of 12% at annealing temperatures below 400℃. An enormous period expansion (~40%) induced by the crystallization and agglomeration of Co layers has been observed at 500℃. While the period expansion of CoN/CN multilayers is only 4% at 400℃. The interface pattern of the CoN/CN multilayers still exists even if they were annealed at 700℃. The relatively good thermal stability of CoN/CN multilayers can be attributed to the suppression of the formation of the sp 3 bonding and, at annealing temperatures higher than the phase transition temperature of 420℃ (from hcp to fcc), the coexistence of hcp and fcc Co structures through doping nitrogen.展开更多
文摘Interfacial bonding in as deposited and annealed Co/C soft X ray multilayer structures is investigated by X ray photo electron spectroscopy (XPS).It is found that there is interdiffusion between cobalt and carbon in the as deposited Co/C multilayers,and this is confirmed by structure characterization using low angle X ray diffraction (LAXD).The calculation of the chemical shifts in Co C system based on Miedemas macroscopic atom model suggests that it is impossible to detect the chemical shift experimentally in the Co C compound,which is consistent with the XPS results.The presence of metallic carbide bonding is evidenced through the nature of the carbon bonding in survey taken at Co C and C Co interfaces of annealed samples.Our results also indicate that XPS is a direct method to probe the chemical bonding at the interfaces.
文摘The demand to enhance the optical resolution, to structure and observe ever smaller details, has pushed the way towards the EUV and soft X-rays. Induced mainly by the production of more powerful electronic circuits with the aid of projection lithography, optics developments in recent years can be characterized by the use of electromagnetic radiation with smaller wavelength. The good prospects of the EUV and soft X-rays for next generation lithography systems (λ=13.5 nm), microscopy in the “water window” (λ=2.3~4.4 nm), astronomy (λ=5~31 nm), spectroscopy, plasma diagnostics and EUV/soft X-ray laser research have led to considerable progress in the development of different multilayer optics. Since optical systems in the EUV/soft X-ray spectral region consist of several mirror elements a maximum reflectivity of each multilayer is essential for a high throughput. This paper covers recent results of the enhanced spectral behavior of Mo/Si, Cr/Sc and Sc/Si multilayer optics.
文摘A new interferometer for extreme ultraviolet (EUV) radiation with a laser produced plasma (LPP) laboratory source is under construction. The LPP source is operated with a Sn solid rod target on which pulsed YAG laser is focused to produce high temperature plasma emitting EUV radiation. The source is equipped with a newly designed debris stopper protecting a condenser multilayer mirror from the particle debris of the target. The condenser mirror focuses the light onto an EUV beam-splitter to form transmitted and reflected paths for producing interference fringes of a sharing type. The optical configuration is of a common path based on a triangular path type with a focusing at the beam-splitter, which is enabled to produce fringes by a low coherence radiation with a standard optical quality beam-splitter. The fringes are recorded by an imaging plate with pixels as small as 25μm. The dynamic range of linearity in detection of the EUV light was found to be more than 10 4 with sensitivity of 10 4 photons/pixel, enough for the purpose of interferogram recording, possibly with one laser shot.
文摘Modulation structure stability of Co/C and CoN/CN soft X ray multilayers has been investigated by X ray diffraction and Raman spectroscopy. The graphitization of the amorphous carbon layers in Co/C multilayers causes a period expansion of 12% at annealing temperatures below 400℃. An enormous period expansion (~40%) induced by the crystallization and agglomeration of Co layers has been observed at 500℃. While the period expansion of CoN/CN multilayers is only 4% at 400℃. The interface pattern of the CoN/CN multilayers still exists even if they were annealed at 700℃. The relatively good thermal stability of CoN/CN multilayers can be attributed to the suppression of the formation of the sp 3 bonding and, at annealing temperatures higher than the phase transition temperature of 420℃ (from hcp to fcc), the coexistence of hcp and fcc Co structures through doping nitrogen.