Parking in a small parking lot within limited space poses a difficult task. It often leads to deviations between the final parking posture and the target posture. These deviations can lead to partial occupancy of adja...Parking in a small parking lot within limited space poses a difficult task. It often leads to deviations between the final parking posture and the target posture. These deviations can lead to partial occupancy of adjacent parking lots, which poses a safety threat to vehicles parked in these parking lots. However, previous studies have not addressed this issue. In this paper, we aim to evaluate the impact of parking deviation of existing vehicles next to the target parking lot(PDEVNTPL) on the automatic ego vehicle(AEV) parking, in terms of safety, comfort, accuracy, and efficiency of parking. A segmented parking training framework(SPTF) based on soft actor-critic(SAC) is proposed to improve parking performance. In the proposed method, the SAC algorithm incorporates strategy entropy into the objective function, to enable the AEV to learn parking strategies based on a more comprehensive understanding of the environment. Additionally, the SPTF simplifies complex parking tasks to maintain the high performance of deep reinforcement learning(DRL). The experimental results reveal that the PDEVNTPL has a detrimental influence on the AEV parking in terms of safety, accuracy, and comfort, leading to reductions of more than 27%, 54%, and 26%respectively. However, the SAC-based SPTF effectively mitigates this impact, resulting in a considerable increase in the parking success rate from 71% to 93%. Furthermore, the heading angle deviation is significantly reduced from 2.25 degrees to 0.43degrees.展开更多
In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-in...In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-integrated DRL algorithm guides the RVPP to participate effectively in both the day-ahead and real-time markets,lowering the electricity purchase costs and consumption risks for end-users.The Lagrangian relaxation technique is introduced to transform the constrained Markov decision process(CMDP)into an unconstrained optimization problem,which guarantees that the constraints are strictly satisfied without determining the penalty coefficients.Furthermore,to enhance the scalability of the constrained soft actor-critic(CSAC)-based RVPP scheduling approach,a fully distributed scheduling architecture was designed to enable plug-and-play in the residential distributed energy resources(RDER).Case studies performed on the constructed RVPP scenario validated the performance of the proposed methodology in enhancing the responsiveness of the RDER to power tariffs,balancing the supply and demand of the power grid,and ensuring customer comfort.展开更多
Actor-Critic是一种强化学习方法,通过与环境在线试错交互收集样本来学习策略,是求解序贯感知决策问题的有效手段.但是,这种在线交互的主动学习范式在一些复杂真实环境中收集样本时会带来成本和安全问题离线强化学习作为一种基于数据驱...Actor-Critic是一种强化学习方法,通过与环境在线试错交互收集样本来学习策略,是求解序贯感知决策问题的有效手段.但是,这种在线交互的主动学习范式在一些复杂真实环境中收集样本时会带来成本和安全问题离线强化学习作为一种基于数据驱动的强化学习范式,强调从静态样本数据集中学习策略,与环境无探索交互,为机器人、自动驾驶、健康护理等真实世界部署应用提供了可行的解决方案,是近年来的研究热点.目前,离线强化学习方法存在学习策略和行为策略之间的分布偏移挑战,针对这个挑战,通常采用策略约束或值函数正则化来限制访问数据集分布之外(Out-Of-Distribution,OOD)的动作,从而导致学习性能过于保守,阻碍了值函数网络的泛化和学习策略的性能提升.为此,本文利用不确定性估计和OOD采样来平衡值函数学习的泛化性和保守性,提出一种基于不确定性估计的离线确定型Actor-Critic方法(Offline Deterministic Actor-Critic based on UncertaintyEstimation,ODACUE).首先,针对确定型策略,给出一种Q值函数的不确定性估计算子定义,理论证明了该算子学到的Q值函数是最优Q值函数的一种悲观估计.然后,将不确定性估计算子应用于确定型Actor-Critic框架中,通过对不确定性估计算子进行凸组合构造Critic学习的目标函数.最后,D4RL基准数据集任务上的实验结果表明:相较于对比算法,ODACUE在11个不同质量等级数据集任务中的总体性能提升最低达9.56%,最高达64.92%.此外,参数分析和消融实验进一步验证了ODACUE的稳定性和泛化能力.展开更多
基金supported by National Natural Science Foundation of China(52222215, 52272420, 52072051)。
文摘Parking in a small parking lot within limited space poses a difficult task. It often leads to deviations between the final parking posture and the target posture. These deviations can lead to partial occupancy of adjacent parking lots, which poses a safety threat to vehicles parked in these parking lots. However, previous studies have not addressed this issue. In this paper, we aim to evaluate the impact of parking deviation of existing vehicles next to the target parking lot(PDEVNTPL) on the automatic ego vehicle(AEV) parking, in terms of safety, comfort, accuracy, and efficiency of parking. A segmented parking training framework(SPTF) based on soft actor-critic(SAC) is proposed to improve parking performance. In the proposed method, the SAC algorithm incorporates strategy entropy into the objective function, to enable the AEV to learn parking strategies based on a more comprehensive understanding of the environment. Additionally, the SPTF simplifies complex parking tasks to maintain the high performance of deep reinforcement learning(DRL). The experimental results reveal that the PDEVNTPL has a detrimental influence on the AEV parking in terms of safety, accuracy, and comfort, leading to reductions of more than 27%, 54%, and 26%respectively. However, the SAC-based SPTF effectively mitigates this impact, resulting in a considerable increase in the parking success rate from 71% to 93%. Furthermore, the heading angle deviation is significantly reduced from 2.25 degrees to 0.43degrees.
基金supported by the Sichuan Science and Technology Program(grant number 2022YFG0123).
文摘In this study,a novel residential virtual power plant(RVPP)scheduling method that leverages a gate recurrent unit(GRU)-integrated deep reinforcement learning(DRL)algorithm is proposed.In the proposed scheme,the GRU-integrated DRL algorithm guides the RVPP to participate effectively in both the day-ahead and real-time markets,lowering the electricity purchase costs and consumption risks for end-users.The Lagrangian relaxation technique is introduced to transform the constrained Markov decision process(CMDP)into an unconstrained optimization problem,which guarantees that the constraints are strictly satisfied without determining the penalty coefficients.Furthermore,to enhance the scalability of the constrained soft actor-critic(CSAC)-based RVPP scheduling approach,a fully distributed scheduling architecture was designed to enable plug-and-play in the residential distributed energy resources(RDER).Case studies performed on the constructed RVPP scenario validated the performance of the proposed methodology in enhancing the responsiveness of the RDER to power tariffs,balancing the supply and demand of the power grid,and ensuring customer comfort.
文摘Actor-Critic是一种强化学习方法,通过与环境在线试错交互收集样本来学习策略,是求解序贯感知决策问题的有效手段.但是,这种在线交互的主动学习范式在一些复杂真实环境中收集样本时会带来成本和安全问题离线强化学习作为一种基于数据驱动的强化学习范式,强调从静态样本数据集中学习策略,与环境无探索交互,为机器人、自动驾驶、健康护理等真实世界部署应用提供了可行的解决方案,是近年来的研究热点.目前,离线强化学习方法存在学习策略和行为策略之间的分布偏移挑战,针对这个挑战,通常采用策略约束或值函数正则化来限制访问数据集分布之外(Out-Of-Distribution,OOD)的动作,从而导致学习性能过于保守,阻碍了值函数网络的泛化和学习策略的性能提升.为此,本文利用不确定性估计和OOD采样来平衡值函数学习的泛化性和保守性,提出一种基于不确定性估计的离线确定型Actor-Critic方法(Offline Deterministic Actor-Critic based on UncertaintyEstimation,ODACUE).首先,针对确定型策略,给出一种Q值函数的不确定性估计算子定义,理论证明了该算子学到的Q值函数是最优Q值函数的一种悲观估计.然后,将不确定性估计算子应用于确定型Actor-Critic框架中,通过对不确定性估计算子进行凸组合构造Critic学习的目标函数.最后,D4RL基准数据集任务上的实验结果表明:相较于对比算法,ODACUE在11个不同质量等级数据集任务中的总体性能提升最低达9.56%,最高达64.92%.此外,参数分析和消融实验进一步验证了ODACUE的稳定性和泛化能力.
文摘大规模阵列天线技术(Massive Multiple Input Multiple Output,Massive MIMO)作为第五代移动通信(5G)的无线核心技术,实现了多波束空间覆盖增强,然而5G Massive MIMO的多波束射频高能耗、多波束碰撞和增加的干扰造会成5G网络能效下降,运营成本增高。基于3D数字地图、基站工程参数、终端上报的测量报告/最小化路测(Measurement Report/Minimization of Drive Test,MR/MDT)数据、用户/业务分布构建的三维数字孪生栅格,通过卷积长短期记忆(Convolutional Long Short Term Memory,Conv-LSTM)算法对栅格内的用户分布、业务分布进行分析和预测,通过Actor-Critic架构对5G波束配置和优化策略进行评估,实现不同场景、时段的5G波束最佳能效,智能适应5G网络潮汐效应,实现“网随业动”。