The Regional Integrated Energy System(RIES)has brought new modes of development,utilization,conversion,storage of energy.The introduction of Soft Open Point(SOP)and the application of Power to Gas(P2G)technology will ...The Regional Integrated Energy System(RIES)has brought new modes of development,utilization,conversion,storage of energy.The introduction of Soft Open Point(SOP)and the application of Power to Gas(P2G)technology will greatly deepen the coupling of the electricity-gas integrated energy system,improve the flexibility and safety of the operation of the power system,and bring a deal of benefits to the power system.On this background,an optimal dispatch model of RIES combined cold,heat,gas and electricity with SOP is proposed.Firstly,RIES architecture with SOP and P2G is designed and its mathematical model also is built.Secondly,on the basis of considering the optimal scheduling of combined cold,heat,gas and electricity,the optimal scheduling model for RIES was established.After that,the original model is transformed into a mixed-integer second-order cone programming model by using linearization and second-order cone relaxation techniques,and the CPLEX solver is invoked to solve the optimization problem.Finally,the modified IEEE 33-bus systemis used to analyze the benefits of SOP,P2G technology and lithium bromide absorption chillers in reducing systemnetwork loss and cost,as well as improving the system’s ability to absorb wind and solar and operating safety.展开更多
Due to the lack of flexible interconnection devices,power imbalances between networks cannot be relieved effectively.Meanwhile,increasing the penetration of distributed generators exacerbates the temporal power imbala...Due to the lack of flexible interconnection devices,power imbalances between networks cannot be relieved effectively.Meanwhile,increasing the penetration of distributed generators exacerbates the temporal power imbalances caused by large peak-valley load differences.To improve the operational economy lowered by spatiotemporal power imbalances,this paper proposes a two-stage optimization strategy for active distribution networks(ADNs)interconnected by soft open points(SOPs).The SOPs and energy storage system(ESS)are adopted to transfer power spatially and temporally,respectively.In the day-ahead scheduling stage,massive stochastic scenarios against the uncertainty of wind turbine output are generated first.To improve computational efficiency in massive stochastic scenarios,an equivalent model between networks considering sensitivities of node power to node voltage and branch current is established.The introduction of sensitivities prevents violations of voltage and current.Then,the operating ranges(ORs)of the active power of SOPs and the state of charge(SOC)of ESS are obtained from models between networks and within the networks,respectively.In the intraday corrective control stage,based on day-ahead ORs,a receding-horizon model that minimizes the purchase cost of electricity and voltage deviations is established hour by hour.Case studies on two modified ADNs show that the proposed strategy achieves spatiotemporal power balance with lower cost compared with traditional strategies.展开更多
Soft open points(SOPs)are power electronic devices that may replace conventional normally-open points in distribution networks.They can be used for active power flow control,reactive power compensation,fault isolation...Soft open points(SOPs)are power electronic devices that may replace conventional normally-open points in distribution networks.They can be used for active power flow control,reactive power compensation,fault isolation,and service restoration through network reconfiguration with enhanced operation flexibility and grid resiliency.Due to unbalanced loading conditions,the voltage unbalance issue,as a common problem in distribution networks,has negative impacts on distribution network operation.In this paper,a control strategy of voltage unbalance compensation for feeders using SOPs is proposed.With the power flow control,three-phase current is regulated simultaneously to mitigate the unbalanced voltage between neighboring feeders where SOPs are installed.Feeder voltage unbalance and current unbalance among three phases are compensated with the injection of negative-sequence and zero-sequence current from SOPs.Especially in response to power outages,three-phase voltage of isolated loads is regulated to be balanced by the control of SOPs connected to the feeders under faults,even if the loads are unbalanced.A MATLAB/Simulink model of the IEEE 13-bus test feeder with an SOP across feeder ends is implemented,and experimental tests on a hardware-in-the-loop platform are implemented to validate the effectiveness of the proposed control strategy.展开更多
With an increasing integration of intermittent distributed energy resources(DERs),the consequent voltage excursion and thermal overloading issues limit the self-sufficiency of distribution networks(DNs).The concept of...With an increasing integration of intermittent distributed energy resources(DERs),the consequent voltage excursion and thermal overloading issues limit the self-sufficiency of distribution networks(DNs).The concept of soft open point(SOP)has been proposed as a promising solution to improve the hosting capacity of DNs.In this paper,considering the ability of building thermal storage(BTS)to increase the penetration of renewable energy in DNs,we provide an optimal planning framework for SOP and DER.The optimal planning model is aimed at minimizing the investment and operational costs while respecting various constraints,including the self-sufficiency requirement of the DN,SOP,building thermal storage capacity and DER operations,etc.A steady-state SOP model is formulated and linearized to be incorporated into the planning framework.To make full use of the BTS flexibility provided by ubiquitous buildings,a differential equation model for building thermal dynamics is formulated.A hybrid stochastic/robust optimization approach is adopted to depict the uncertainties in renewable energy and market prices.IEEE 33-bus feeder and a realistic DN in the metropolitan area of Caracas are tested to validate the effectiveness of the proposed framework and method.Case studies show that SOP/BTS plays a complementary and coordinated coupling role in the thermo-electric system,thereby effectively improving the hosting capacity and self-sufficiency of DNs.展开更多
An optimal operation scheme is of great significance in islanded distribution networks to restore critical loads and has recently attracted considerable attention.In this paper,an optimal power flow(OPF)model for isla...An optimal operation scheme is of great significance in islanded distribution networks to restore critical loads and has recently attracted considerable attention.In this paper,an optimal power flow(OPF)model for islanded distribution networks equipped with soft open points(SOPs)is proposed.Unlike in the grid-connected mode,the adequacy of local power generation in distribution networks is critical for islanded systems.The proposed approach utilizes the power output of local distributed generations(DGs)and the benefits of reactive power compensation provided by SOPs to allow maximum loadability.To exploit the available resources,an optimal secondary droop control strategy is introduced for the islanded distribution networks,thereby minimizing load shedding.The formulated OPF problem is essentially a mixed-integer nonlinear programming(MINLP)model.To guarantee the computation efficiency and accuracy.A successive mixed-integer second-order cone programming(SMISOCP)algorithm is proposed for handling the nonlinear islanded power flow formulations.Two case studies,incorporating a modified IEEE 33-bus system and IEEE 123-bus system,are performed to test the effectiveness of the proposed approach.展开更多
The purpose of active distribution networks(ADNs)is to provide effective control approaches for enhancing the operation of distribution networks(DNs)and greater accommodation of distributed generation(DG)sources.With ...The purpose of active distribution networks(ADNs)is to provide effective control approaches for enhancing the operation of distribution networks(DNs)and greater accommodation of distributed generation(DG)sources.With the integration of DG sources into DNs,several operational problems have drawn attention such as overvoltage and power flow alteration issues.These problems can be dealt with by utilizing distribution network reconfiguration(DNR)and soft open points(SOPs).An SOP is a power electronic device capable of accurately controlling active and reactive power flows.Another significant aspect often overlooked is the coordination of protection devices needed to keep the network safe from damage.When implementing DNR and SOPs in real DNs,protection constraints must be considered.This paper presents an ADN reconfiguration approach that includes DG sources,SOPs,and protection devices.This approach selects the ideal configuration,DG output,and SOP placement and control by employing particle swarm optimization(PSO)to minimize power loss while ensuring the correct operation of protection devices under normal and fault conditions.The proposed approach explicitly formulates constraints on network operation,protection coordination,DG size,and SOP size.Finally,the proposed approach is evaluated using the standard IEEE 33-bus and IEEE 69-bus networks to demonstrate the validity.展开更多
To optimize the placement of soft open points(SOPs)in active distribution networks(ADNs),many aspects should be considered,including the adjustment of transmission power,integration of distributed generations(DGs),coo...To optimize the placement of soft open points(SOPs)in active distribution networks(ADNs),many aspects should be considered,including the adjustment of transmission power,integration of distributed generations(DGs),coordination with conventional control methods,and maintenance of economic costs.To address this multi-objective planning problem,this study proposes a multi-stage coordinated robust optimization model for the SOP allocation in ADNs with photovoltaic(PV).First,two robust technical indices based on a robustness index are proposed to evaluate the operation conditions and robust optimality of the solutions.Second,the proposed coordinated allocation model aims to optimize the total cost,robust voltage offset index,robust utilization index,and voltage collapse proximity index.Third,the optimization methods of the multiand single-objective models are coordinated to solve the proposed multi-stage problem.Finally,the proposed model is implemented on an IEEE 33-node distribution system to verify its effectiveness.Numerical results show that the proposed index can better reveal voltage offset conditions as well as the SOP utilization,and the proposed model outperforms conventional ones in terms of robustness of placement plans and total cost.展开更多
Development of power electronic devices and their implementation in power distribution networks significantly improves not only the easier integration of distributed generation into distribution networks but also the ...Development of power electronic devices and their implementation in power distribution networks significantly improves not only the easier integration of distributed generation into distribution networks but also the further refinement of control algorithms specialized in the application of power management procedures in distribution systems.Implementation of DC Soft Open Points(DCSOP)for closing loops in distribution networks could serve as one of the most representative examples of the use of power electronic devices as management resources in modern distribution networks.The paper describes the possibilities of the application of DCSOP used for loops closure and power flow control in medium voltage distribution networks with integrated distributed generators.Considering all the benefits of loops closure and the controllability of the DCSOP,it is considered as a management resource capable of achieving the desired/optimal state in the distribution network.The management strategy proposed in this paper covers two cases:the first case is where an adequate communication infrastructure is available when all DCSOP operations are based on Optimal Power Flow(OPF)calculations,and the second case is when OPF results are unavailable for some reason(most often due to communication interruptions)and DCSOP operations are based on processing available data using a neural network-based algorithm.The proposed management strategy has been implemented and tested on an IEEE 33 distribution test network with integrated distributed generators.The simulation results,described in this paper,can serve not only as a basis for further scientific research but also as a basis for the practical implementation of real controllers based on the proposed algorithm and its application in practice,and in real distribution networks.展开更多
With the rapid development of flexible interconnection technology in active distribution networks(ADNs),many power electronic devices have been employed to improve system operational performance.As a novel fully-con-t...With the rapid development of flexible interconnection technology in active distribution networks(ADNs),many power electronic devices have been employed to improve system operational performance.As a novel fully-con-trolled power electronic device,energy storage integrated soft open point(ESOP)is gradually replacing traditional switches.This can significantly enhance the controllability of ADNs.To facilitate the utilization of ESOP,device loca-tions and capacities should be configured optimally.Thus,this paper proposes a multi-stage expansion planning method of ESOP with the consideration of tie-line reconstruction.First,based on multi-terminal modular design characteristics,the ESOP planning model is established.A multi-stage planning framework of ESOP is then presented,in which the evolutionary relationship among different planning schemes is analyzed.Based on this framework,a multi-stage planning method of ESOP with consideration of tie-line reconstruction is subsequently proposed.Finally,case studies are conducted on a modified practical distribution network,and the cost-benefit analysis of device and multiple impact factors are given to prove the effectiveness of the proposed method.展开更多
The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices...The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.展开更多
分布式可再生能源大量并网成为必然趋势,合理的设备规划可以提升配电系统运行灵活性,保证可再生能源的有效消纳。智能储能软开关(soft open points integrated with energy storage system,ESOP)具有时空双尺度运行灵活性,有利于分布式...分布式可再生能源大量并网成为必然趋势,合理的设备规划可以提升配电系统运行灵活性,保证可再生能源的有效消纳。智能储能软开关(soft open points integrated with energy storage system,ESOP)具有时空双尺度运行灵活性,有利于分布式能源并网。因此,考虑规划决策者不完全理性特点,提出一种配电网ESOP规划方法。首先,建立了含ESOP的配电网运行模型;然后,提取出多种面向高渗透率可再生能源并网下的ESOP规划经济性指标;最后,基于前景理论描述不完全理性特征,构建了配电网功率损失减少、购电成本减少、弃风弃光惩罚减少及投资成本属性的前景值模型,以年度综合前景值最大为目标构建ESOP的规划模型。通过线性化凸松弛等手段将原规划模型转化为混合整数二阶锥规划模型。改进的IEEE33节点系统与实际配电网算例结果表明,ESOP可以通过时序特性和柔性互联特性提升配电网消纳能力和运行经济性;同时,决策者对于各属性的重视程度和期望值会对规划结果产生影响。展开更多
电力电子柔性化和分布式发电(DG)消纳是配电网研究的2个热点问题,揭示了配电网柔性度对DG消纳的影响规律和机理。首先,介绍了配电网柔性度的概念,并改进了柔性度的定义。然后,以典型接线模式和IEEE RBTS-Bus4扩展算例为研究对象,观察随...电力电子柔性化和分布式发电(DG)消纳是配电网研究的2个热点问题,揭示了配电网柔性度对DG消纳的影响规律和机理。首先,介绍了配电网柔性度的概念,并改进了柔性度的定义。然后,以典型接线模式和IEEE RBTS-Bus4扩展算例为研究对象,观察随柔性度升高时DG消纳率的变化,并分析规律和机理。研究发现,配电网柔性化并非都能提升DG消纳,存在一个起效条件:智能软开关(soft open point,SOP)某一侧馈线存在DG相对负荷的盈余,同时另一侧存在DG缺额。然而满足起效条件后,消纳率和柔性度之间的规律性仍未显现。提出分析消纳提升限制条件和按SOP安装次序观察的2种方法,发现了隐藏的规律:当存在消纳提升可用空间且无SOP容量限制下,或者同一SOP安装次序下,柔性度和消纳率才具有正相关关系。发现的规律机理为指导配电网的柔性化发展和DG消纳提供了新的理论依据。展开更多
基金Project Supported by National Natural Science Foundation of China(51777193).
文摘The Regional Integrated Energy System(RIES)has brought new modes of development,utilization,conversion,storage of energy.The introduction of Soft Open Point(SOP)and the application of Power to Gas(P2G)technology will greatly deepen the coupling of the electricity-gas integrated energy system,improve the flexibility and safety of the operation of the power system,and bring a deal of benefits to the power system.On this background,an optimal dispatch model of RIES combined cold,heat,gas and electricity with SOP is proposed.Firstly,RIES architecture with SOP and P2G is designed and its mathematical model also is built.Secondly,on the basis of considering the optimal scheduling of combined cold,heat,gas and electricity,the optimal scheduling model for RIES was established.After that,the original model is transformed into a mixed-integer second-order cone programming model by using linearization and second-order cone relaxation techniques,and the CPLEX solver is invoked to solve the optimization problem.Finally,the modified IEEE 33-bus systemis used to analyze the benefits of SOP,P2G technology and lithium bromide absorption chillers in reducing systemnetwork loss and cost,as well as improving the system’s ability to absorb wind and solar and operating safety.
基金supported by the Science and Technology Project of State Grid Corporation of China(No.5400-202199281A-0-0-00)。
文摘Due to the lack of flexible interconnection devices,power imbalances between networks cannot be relieved effectively.Meanwhile,increasing the penetration of distributed generators exacerbates the temporal power imbalances caused by large peak-valley load differences.To improve the operational economy lowered by spatiotemporal power imbalances,this paper proposes a two-stage optimization strategy for active distribution networks(ADNs)interconnected by soft open points(SOPs).The SOPs and energy storage system(ESS)are adopted to transfer power spatially and temporally,respectively.In the day-ahead scheduling stage,massive stochastic scenarios against the uncertainty of wind turbine output are generated first.To improve computational efficiency in massive stochastic scenarios,an equivalent model between networks considering sensitivities of node power to node voltage and branch current is established.The introduction of sensitivities prevents violations of voltage and current.Then,the operating ranges(ORs)of the active power of SOPs and the state of charge(SOC)of ESS are obtained from models between networks and within the networks,respectively.In the intraday corrective control stage,based on day-ahead ORs,a receding-horizon model that minimizes the purchase cost of electricity and voltage deviations is established hour by hour.Case studies on two modified ADNs show that the proposed strategy achieves spatiotemporal power balance with lower cost compared with traditional strategies.
基金The work of R.You was supported by Shandong Provincial Key Research and Development Program(No.2019JZZY010902)Shandong Provincial Natural Science Foundation(No.ZR2020ME197).
文摘Soft open points(SOPs)are power electronic devices that may replace conventional normally-open points in distribution networks.They can be used for active power flow control,reactive power compensation,fault isolation,and service restoration through network reconfiguration with enhanced operation flexibility and grid resiliency.Due to unbalanced loading conditions,the voltage unbalance issue,as a common problem in distribution networks,has negative impacts on distribution network operation.In this paper,a control strategy of voltage unbalance compensation for feeders using SOPs is proposed.With the power flow control,three-phase current is regulated simultaneously to mitigate the unbalanced voltage between neighboring feeders where SOPs are installed.Feeder voltage unbalance and current unbalance among three phases are compensated with the injection of negative-sequence and zero-sequence current from SOPs.Especially in response to power outages,three-phase voltage of isolated loads is regulated to be balanced by the control of SOPs connected to the feeders under faults,even if the loads are unbalanced.A MATLAB/Simulink model of the IEEE 13-bus test feeder with an SOP across feeder ends is implemented,and experimental tests on a hardware-in-the-loop platform are implemented to validate the effectiveness of the proposed control strategy.
基金This work was supported in part by the Smart Grid Joint Foundation Program of National Science Foundation of China and State Grid Corporation of China(No.U1966204)in part by National Natural Science Foundation of China(No.51907064)。
文摘With an increasing integration of intermittent distributed energy resources(DERs),the consequent voltage excursion and thermal overloading issues limit the self-sufficiency of distribution networks(DNs).The concept of soft open point(SOP)has been proposed as a promising solution to improve the hosting capacity of DNs.In this paper,considering the ability of building thermal storage(BTS)to increase the penetration of renewable energy in DNs,we provide an optimal planning framework for SOP and DER.The optimal planning model is aimed at minimizing the investment and operational costs while respecting various constraints,including the self-sufficiency requirement of the DN,SOP,building thermal storage capacity and DER operations,etc.A steady-state SOP model is formulated and linearized to be incorporated into the planning framework.To make full use of the BTS flexibility provided by ubiquitous buildings,a differential equation model for building thermal dynamics is formulated.A hybrid stochastic/robust optimization approach is adopted to depict the uncertainties in renewable energy and market prices.IEEE 33-bus feeder and a realistic DN in the metropolitan area of Caracas are tested to validate the effectiveness of the proposed framework and method.Case studies show that SOP/BTS plays a complementary and coordinated coupling role in the thermo-electric system,thereby effectively improving the hosting capacity and self-sufficiency of DNs.
基金This work was supported in part by the science and technology project of State Grid Corporation of China under Grant 5400-201955369A-0-0-00。
文摘An optimal operation scheme is of great significance in islanded distribution networks to restore critical loads and has recently attracted considerable attention.In this paper,an optimal power flow(OPF)model for islanded distribution networks equipped with soft open points(SOPs)is proposed.Unlike in the grid-connected mode,the adequacy of local power generation in distribution networks is critical for islanded systems.The proposed approach utilizes the power output of local distributed generations(DGs)and the benefits of reactive power compensation provided by SOPs to allow maximum loadability.To exploit the available resources,an optimal secondary droop control strategy is introduced for the islanded distribution networks,thereby minimizing load shedding.The formulated OPF problem is essentially a mixed-integer nonlinear programming(MINLP)model.To guarantee the computation efficiency and accuracy.A successive mixed-integer second-order cone programming(SMISOCP)algorithm is proposed for handling the nonlinear islanded power flow formulations.Two case studies,incorporating a modified IEEE 33-bus system and IEEE 123-bus system,are performed to test the effectiveness of the proposed approach.
文摘The purpose of active distribution networks(ADNs)is to provide effective control approaches for enhancing the operation of distribution networks(DNs)and greater accommodation of distributed generation(DG)sources.With the integration of DG sources into DNs,several operational problems have drawn attention such as overvoltage and power flow alteration issues.These problems can be dealt with by utilizing distribution network reconfiguration(DNR)and soft open points(SOPs).An SOP is a power electronic device capable of accurately controlling active and reactive power flows.Another significant aspect often overlooked is the coordination of protection devices needed to keep the network safe from damage.When implementing DNR and SOPs in real DNs,protection constraints must be considered.This paper presents an ADN reconfiguration approach that includes DG sources,SOPs,and protection devices.This approach selects the ideal configuration,DG output,and SOP placement and control by employing particle swarm optimization(PSO)to minimize power loss while ensuring the correct operation of protection devices under normal and fault conditions.The proposed approach explicitly formulates constraints on network operation,protection coordination,DG size,and SOP size.Finally,the proposed approach is evaluated using the standard IEEE 33-bus and IEEE 69-bus networks to demonstrate the validity.
基金supported in part by the National Natural Science Foundation of China(General Program)(No.52077017)the International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program)(No.YJ20210337)。
文摘To optimize the placement of soft open points(SOPs)in active distribution networks(ADNs),many aspects should be considered,including the adjustment of transmission power,integration of distributed generations(DGs),coordination with conventional control methods,and maintenance of economic costs.To address this multi-objective planning problem,this study proposes a multi-stage coordinated robust optimization model for the SOP allocation in ADNs with photovoltaic(PV).First,two robust technical indices based on a robustness index are proposed to evaluate the operation conditions and robust optimality of the solutions.Second,the proposed coordinated allocation model aims to optimize the total cost,robust voltage offset index,robust utilization index,and voltage collapse proximity index.Third,the optimization methods of the multiand single-objective models are coordinated to solve the proposed multi-stage problem.Finally,the proposed model is implemented on an IEEE 33-node distribution system to verify its effectiveness.Numerical results show that the proposed index can better reveal voltage offset conditions as well as the SOP utilization,and the proposed model outperforms conventional ones in terms of robustness of placement plans and total cost.
文摘Development of power electronic devices and their implementation in power distribution networks significantly improves not only the easier integration of distributed generation into distribution networks but also the further refinement of control algorithms specialized in the application of power management procedures in distribution systems.Implementation of DC Soft Open Points(DCSOP)for closing loops in distribution networks could serve as one of the most representative examples of the use of power electronic devices as management resources in modern distribution networks.The paper describes the possibilities of the application of DCSOP used for loops closure and power flow control in medium voltage distribution networks with integrated distributed generators.Considering all the benefits of loops closure and the controllability of the DCSOP,it is considered as a management resource capable of achieving the desired/optimal state in the distribution network.The management strategy proposed in this paper covers two cases:the first case is where an adequate communication infrastructure is available when all DCSOP operations are based on Optimal Power Flow(OPF)calculations,and the second case is when OPF results are unavailable for some reason(most often due to communication interruptions)and DCSOP operations are based on processing available data using a neural network-based algorithm.The proposed management strategy has been implemented and tested on an IEEE 33 distribution test network with integrated distributed generators.The simulation results,described in this paper,can serve not only as a basis for further scientific research but also as a basis for the practical implementation of real controllers based on the proposed algorithm and its application in practice,and in real distribution networks.
基金supported by the National Natural Science Foundation of China (51977139,52061635103)Tianjin Science Foundation for Youths (21JCQNJC00430)Science and Technology Project of State Grid Tianjin Electric Power Co. (KJ21-1-36).
文摘With the rapid development of flexible interconnection technology in active distribution networks(ADNs),many power electronic devices have been employed to improve system operational performance.As a novel fully-con-trolled power electronic device,energy storage integrated soft open point(ESOP)is gradually replacing traditional switches.This can significantly enhance the controllability of ADNs.To facilitate the utilization of ESOP,device loca-tions and capacities should be configured optimally.Thus,this paper proposes a multi-stage expansion planning method of ESOP with the consideration of tie-line reconstruction.First,based on multi-terminal modular design characteristics,the ESOP planning model is established.A multi-stage planning framework of ESOP is then presented,in which the evolutionary relationship among different planning schemes is analyzed.Based on this framework,a multi-stage planning method of ESOP with consideration of tie-line reconstruction is subsequently proposed.Finally,case studies are conducted on a modified practical distribution network,and the cost-benefit analysis of device and multiple impact factors are given to prove the effectiveness of the proposed method.
基金supported by the Science and Technology Project of SGCC(kj2022-075).
文摘The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.
文摘分布式可再生能源大量并网成为必然趋势,合理的设备规划可以提升配电系统运行灵活性,保证可再生能源的有效消纳。智能储能软开关(soft open points integrated with energy storage system,ESOP)具有时空双尺度运行灵活性,有利于分布式能源并网。因此,考虑规划决策者不完全理性特点,提出一种配电网ESOP规划方法。首先,建立了含ESOP的配电网运行模型;然后,提取出多种面向高渗透率可再生能源并网下的ESOP规划经济性指标;最后,基于前景理论描述不完全理性特征,构建了配电网功率损失减少、购电成本减少、弃风弃光惩罚减少及投资成本属性的前景值模型,以年度综合前景值最大为目标构建ESOP的规划模型。通过线性化凸松弛等手段将原规划模型转化为混合整数二阶锥规划模型。改进的IEEE33节点系统与实际配电网算例结果表明,ESOP可以通过时序特性和柔性互联特性提升配电网消纳能力和运行经济性;同时,决策者对于各属性的重视程度和期望值会对规划结果产生影响。
文摘电力电子柔性化和分布式发电(DG)消纳是配电网研究的2个热点问题,揭示了配电网柔性度对DG消纳的影响规律和机理。首先,介绍了配电网柔性度的概念,并改进了柔性度的定义。然后,以典型接线模式和IEEE RBTS-Bus4扩展算例为研究对象,观察随柔性度升高时DG消纳率的变化,并分析规律和机理。研究发现,配电网柔性化并非都能提升DG消纳,存在一个起效条件:智能软开关(soft open point,SOP)某一侧馈线存在DG相对负荷的盈余,同时另一侧存在DG缺额。然而满足起效条件后,消纳率和柔性度之间的规律性仍未显现。提出分析消纳提升限制条件和按SOP安装次序观察的2种方法,发现了隐藏的规律:当存在消纳提升可用空间且无SOP容量限制下,或者同一SOP安装次序下,柔性度和消纳率才具有正相关关系。发现的规律机理为指导配电网的柔性化发展和DG消纳提供了新的理论依据。