This paper presents a dynamic model and performance constraint control of a line-driven soft robotic arm.The dynamics model of the soft robotic arm is established by combining the screw theory and the Cosserat theory....This paper presents a dynamic model and performance constraint control of a line-driven soft robotic arm.The dynamics model of the soft robotic arm is established by combining the screw theory and the Cosserat theory.The unmodeled dynamics of the system are considered,and an adaptive neural network controller is designed using the backstepping method and radial basis function neural network.The stability of the closed-loop system and the boundedness of the tracking error are verified using Lyapunov theory.The simulation results show that our approach is a good solution to the motion constraint problem of the line-driven soft robotic arm.展开更多
Developing robotic manipulators capable of performing effective physical interac- tion tasks is a challenging topic. In this study, we design a soft robotic arm (SRA) with multiple degrees of freedom inspired by the...Developing robotic manipulators capable of performing effective physical interac- tion tasks is a challenging topic. In this study, we design a soft robotic arm (SRA) with multiple degrees of freedom inspired by the flexible structures and the unique motion mechanism of the octopus arm. The SRA is fabricated with elastomeric materials, which consists of four series of integrated pneumatic chambers that play similar roles as the muscles in the octopus arm can achieve large bending in various directions with variable stiffness. This SRA displays specified movements via controlling pressure and selecting channels. Moreover, utilizing parallel control, the SRA demonstrates complicated three-dimensional motions. The force response and motion of the SRA are determined both experimentally and computationally. The applications of the present SRA include tightly coiling around the objects because of its large bending deformation (nearly 360°), grasping multiple objects, and adjusting the grabbing mode in accordance with the shape of objects.展开更多
Soft robotics has several promising properties for aquatic applications, such as safe interaction with environments, lightweight, low cost, etc. In this paper, we proposed the kinematic modeling and hydrodynamics expe...Soft robotics has several promising properties for aquatic applications, such as safe interaction with environments, lightweight, low cost, etc. In this paper, we proposed the kinematic modeling and hydrodynamics experiments of a soft robotic arm with 3D locomotion capacity. We developed a mathematical model that incorporates the angle correction, as well as the open-loop model-based motion control. The model could precisely predict the three-dimensional (3D) movement, and the location error is less than 5.7 mm in different attitudes. Furthermore, we performed the hydrodynamic investigations and simultaneously measured the hydrodynamic forces and the wake flows at different amplitudes (50 mm, 100 mm, 150 mm, 200 mm) and frequencies (0.3 Hz, 0.4 Hz, 0.5 Hz) of the soft arm. Surprisingly, we found that the magnitudes of the hydrodynamic force (〈1 N) and the torques (〈0.08 N-m) of dynamically moving soft arm were tiny, which leads to negligible inertial effect for the underwater vehicle than those of the traditional rigid underwater manipulator. Finally, we demonstrated underwater picking and placing tasks of the soft manipulator by using a computer program that controls the tip attitude and velocity. This study may inspire future underwater manipulators that have properties of low-inertial, low power cost and can safely interact with the aauatic environments.展开更多
A novel soft robotic arm(SRA)composed of two soft extensible arms(SEAs)and a soft bendable joint(SBJ)for space capture systems is presented in this paper.A diamond origami pattern was applied in the design of the SEAs...A novel soft robotic arm(SRA)composed of two soft extensible arms(SEAs)and a soft bendable joint(SBJ)for space capture systems is presented in this paper.A diamond origami pattern was applied in the design of the SEAs,and large deformations of the SEAs in positive pressure were simulated using the nonlinear finite element method.A kinematic model of the SRA using the Denavit–Hartenberg method based on the assumption of constant curvatures was proposed.A closed-loop model-free control system based on a PID controller was developed using real-time data from a vision sensor system.The kinematic model and closed-loop model-free control system are experimentally evaluated on an SRA prototype by four experiments.The experimental results demonstrate that the derived kinematic model can finely describe the movement of the SRA and that the closed-loop control system can control the SRA to reach the desired destination or trajectory within an acceptable error and performs well in long-term repeated operations.展开更多
基金supported by the National Natural Science Foundation of China(62103039,62073030)the Scientific and Technological Innovation Foundation of Shunde Graduate School+8 种基金University of Science and Technology Beijing(USTB)(BK21BF003)the Korea Institute of Energy Technology Evaluation and Planning through the Auspices of the Ministry of TradeIndustry and EnergyRepublic of Korea(20213030020160)the Science and Technology Planning Project of Guangzhou City(202102010398,202201010758)the Guangzhou University-Hong Kong University of Science and Technology Joint Research Collaboration Fund(YH202205)Beijing Top Discipline for Artificial Intelligent Science and EngineeringUniversity of Science and Technology Beijing。
文摘This paper presents a dynamic model and performance constraint control of a line-driven soft robotic arm.The dynamics model of the soft robotic arm is established by combining the screw theory and the Cosserat theory.The unmodeled dynamics of the system are considered,and an adaptive neural network controller is designed using the backstepping method and radial basis function neural network.The stability of the closed-loop system and the boundedness of the tracking error are verified using Lyapunov theory.The simulation results show that our approach is a good solution to the motion constraint problem of the line-driven soft robotic arm.
基金This work is supported by the National Natural Science Foundation of China (nos. 11525210, 11621062, and 91748209) and the Fundamental Research Funds for the Central Universities.
文摘Developing robotic manipulators capable of performing effective physical interac- tion tasks is a challenging topic. In this study, we design a soft robotic arm (SRA) with multiple degrees of freedom inspired by the flexible structures and the unique motion mechanism of the octopus arm. The SRA is fabricated with elastomeric materials, which consists of four series of integrated pneumatic chambers that play similar roles as the muscles in the octopus arm can achieve large bending in various directions with variable stiffness. This SRA displays specified movements via controlling pressure and selecting channels. Moreover, utilizing parallel control, the SRA demonstrates complicated three-dimensional motions. The force response and motion of the SRA are determined both experimentally and computationally. The applications of the present SRA include tightly coiling around the objects because of its large bending deformation (nearly 360°), grasping multiple objects, and adjusting the grabbing mode in accordance with the shape of objects.
基金Acknowledgment We thank Yufei Hao and Guangyao Huang for their help on this work. This work was supported by the National Science Foundation support key projects, China, under contract numbers 61633004 and 61333016.
文摘Soft robotics has several promising properties for aquatic applications, such as safe interaction with environments, lightweight, low cost, etc. In this paper, we proposed the kinematic modeling and hydrodynamics experiments of a soft robotic arm with 3D locomotion capacity. We developed a mathematical model that incorporates the angle correction, as well as the open-loop model-based motion control. The model could precisely predict the three-dimensional (3D) movement, and the location error is less than 5.7 mm in different attitudes. Furthermore, we performed the hydrodynamic investigations and simultaneously measured the hydrodynamic forces and the wake flows at different amplitudes (50 mm, 100 mm, 150 mm, 200 mm) and frequencies (0.3 Hz, 0.4 Hz, 0.5 Hz) of the soft arm. Surprisingly, we found that the magnitudes of the hydrodynamic force (〈1 N) and the torques (〈0.08 N-m) of dynamically moving soft arm were tiny, which leads to negligible inertial effect for the underwater vehicle than those of the traditional rigid underwater manipulator. Finally, we demonstrated underwater picking and placing tasks of the soft manipulator by using a computer program that controls the tip attitude and velocity. This study may inspire future underwater manipulators that have properties of low-inertial, low power cost and can safely interact with the aauatic environments.
基金co-supported by the National Natural Science Foundation of China(No.91748209,11402229)Natural Science Foundation of Zhejiang Province(No.LY17A020003)the Fundamental Research Funds for the Central Universities(No.2018QNA4054,2019QNA4057)。
文摘A novel soft robotic arm(SRA)composed of two soft extensible arms(SEAs)and a soft bendable joint(SBJ)for space capture systems is presented in this paper.A diamond origami pattern was applied in the design of the SEAs,and large deformations of the SEAs in positive pressure were simulated using the nonlinear finite element method.A kinematic model of the SRA using the Denavit–Hartenberg method based on the assumption of constant curvatures was proposed.A closed-loop model-free control system based on a PID controller was developed using real-time data from a vision sensor system.The kinematic model and closed-loop model-free control system are experimentally evaluated on an SRA prototype by four experiments.The experimental results demonstrate that the derived kinematic model can finely describe the movement of the SRA and that the closed-loop control system can control the SRA to reach the desired destination or trajectory within an acceptable error and performs well in long-term repeated operations.