Red clay landslides are widely distributed worldwide,resulting in severe loss of life and property.Although rainfall-induced red clay slopes have received extensive attention,the role of cracks in the evolutionary pro...Red clay landslides are widely distributed worldwide,resulting in severe loss of life and property.Although rainfall-induced red clay slopes have received extensive attention,the role of cracks in the evolutionary process of red clay slopes and their connection to failure mechanisms is still poorly understood.A comprehensive approach integrating field investigation,laboratory tests,and numerical simulations was conducted to study the 168 red clay landslides in Xinshao County,China.The results show that red clay is prone to forming cracks at high moisture content due to its low swelling and high shrinkage properties.The failure mode of red clay slopes can be summarized in three stages:crack generation,slope excavation,and slope failure.Furthermore,the retrospective analysis and numerical simulations of the typical landslide in Guanchong indicated that intense rainfall primarily impacts the shallow layer of soil within approximately 0.5 m on the intact slope.However,cracks change the pattern of rainfall infiltration in the slope.Rainwater infiltrates rapidly through the preferential channels induced by the cracks rather than uniformly and slowly from the slope surface.This results in a significant increase in both the depth of infiltration and the saturated zone area of the cracked slope,reaching 3.8 m and 36.2 m^(2),respectively.Consequently,the factor of safety of the slope decreases by 13.4%compared to the intact slope,ultimately triggering landslides.This study can provide valuable insights into understanding the failure mechanisms of red clay slopes in China and other regions with similar geological settings.展开更多
Over the past two decades,it has become increasingly apparent that early Mars may once have been warmer,wetter and more habitable for microbial life than it is today,which has spurred discussions about potential biosi...Over the past two decades,it has become increasingly apparent that early Mars may once have been warmer,wetter and more habitable for microbial life than it is today,which has spurred discussions about potential biosignatures that may be preserved in Martian sediments.An impediment to this line of research is the pervasive oxidation of Mars’surface due to photochemical oxidants that have likely destroyed remnants of organic matter.Here,we investigate whether nitrogen(N)transferred from biomass to phyllosilicate minerals during diagenesis can be preserved in oxidized mudrocks.We investigate two sequences of terrestrial Proterozoic red beds,namely the Sibley Group(1.4 Ga)in Canada and the Stoer Group(1.2 Ga)in Scotland,and we find enrichments in authigenic N in the range of several tens of ppm in both units.The highest concentrations(ca.100 ppm on average)are found in the most desiccated red beds of the Stoer Group,concurrent with enrichments in potassium(K).We discuss similarities and differences between the two sets of rocks with regards to salinity,pH,biological productivity and K-metasomatism,and we conclude that the ideal mechanism for the preservation of biogenic N in red beds may be in-situ release of ammonium from microbial mats into the clay substrate,possibly facilitated by early diagenetic,biologically induced illitization.Illite and smectite have been observed on Mars,and experiments suggest that Martian waters contained moderate amounts of dissolved K.Hence,it is conceivable that a similar K and N enrichment process could have occurred as to what we document for the Proterozoic,preserving evidence of life that may have survived to the modern day.展开更多
This research aimed at testing the viability of using Sorghum Stalk Ash (SSA) as a partial replacement of lime in the stabilization of red clay soils for road subgrade construction. Red clay soils have been identified...This research aimed at testing the viability of using Sorghum Stalk Ash (SSA) as a partial replacement of lime in the stabilization of red clay soils for road subgrade construction. Red clay soils have been identified as highly expansive soils, which are affected by both climatic conditions and loading patterns. The consideration of both traffic loading patterns and climatic effects on these soils has been taken into account. A penetration test of 2.5 mm has been used on both pure red soils and stabilized soils at 10% and 15% partial replacement of lime with SSA and showed an improvement in the CBR of stabilized red clay soils up to 11.6%. Again, the PI of stabilized soils at 15% partial replacement of lime reduced up to 11.2%. The results obtained on both CBR and PI of these red clay soils are within the recommended values for the effective subgrade required for laying both permanent and flexible pavements. As a result, a recommendation of making use of SSA to lower the quantities of lime and its costs used in the stabilization of highly expansive soils have been tested through this research. However, further research on a more percentage partial replacement of lime to improve the PI of these soils to below 10% while keeping the CBR levels within the road construction regulations is welcomed.展开更多
Coagulation of red tide organism cells with clays is discussed in theory and the effects of some factors on it are studied. A quantitative model is presented which describes how the coagulation varies with pH in solut...Coagulation of red tide organism cells with clays is discussed in theory and the effects of some factors on it are studied. A quantitative model is presented which describes how the coagulation varies with pH in solution. According to the model, within the pH-range between pHzpcb, and pHzpcb, VR is negative and the coagulation is strong and strongest at pH = (pHzpca + pHzpcb)/2. It is also demonstrated that when the diameter of clay particles is close to that of cells, the collision probability is low, resulting in weaker coagulation. The model results have been corroborated by experiments and so are scientific and theoretical bases for application.展开更多
A thin layer of yellow-brown-colored earth was generally found on Quaternary red clay in Jiujiang,Jiangxi Province. A typical profile was established. Both particle size distribution and REE (rare earthelements) chara...A thin layer of yellow-brown-colored earth was generally found on Quaternary red clay in Jiujiang,Jiangxi Province. A typical profile was established. Both particle size distribution and REE (rare earthelements) characteristics of the yellow-brown-colored earth of the profile fully suggested its aeolian origin andclose similarity to Naming Xiashu loess. The study also implied aeolian origin of the underlying Quaternaryred clap Compared with the red clay, the yellow- brown- colored earth was less weathered because of its lowercontent of free iron and higher mole ratios of SiO2/A12O3 and SiO2/(Fe2O3+A12O3 ) as well as its lessdeveloped chemical microtextures of quartz grains.In order to study the aged of the two deposits comparatively, the thermoluminescent dating method wasused. As a result, the bottom of the yellow-brown-colored esrth was dated to 6015 ka B. P. and the upperpart of the red clay 38854 ka B. P. It was suggested that the yellow- browm- colored earth was formed inthe Late Pleistocene and was probably the aeolian deposit of the Last Glacial, which corresponded with theMalan loess in the Loess Plateau of the northwestern part of China; while the underlying red clay was formedin the Middle Pleistocene.A "yellow cap" on Quaternary red clay in Jiujiang implied a great climatic and environmental varistionin the beginning of the Late Pleistocene in the southern pot of China, especially in the middle and lowerreaches of the Yangtze River. The eveal not only halted the rubification, once dominating the region, butalso produced a widespread covering of aeolian deposit, as only occurred in the cold and dry environment.展开更多
The particle size distribution, heavy mineral constituents and rare earth elements (REE) characteristics of the Quaternary red clay of southern Anhui Province were studied to explore the origin of the clay. The resul...The particle size distribution, heavy mineral constituents and rare earth elements (REE) characteristics of the Quaternary red clay of southern Anhui Province were studied to explore the origin of the clay. The results showed that the clay had some properties of areolian deposits, which could be compared with those of the loess in North China; and its chondrite normalized curves of REE were similar to those of the Xiashu loess, implying that they shared the same origin. It was concluded in combination with the results reported by other researchers that the Quaternary red clay of southern Anhui Province originated from aeolian deposits, and this could reveal the cycles of warm and cold climates in the area during the Quaternary period.展开更多
Red clay type gold deposits,located in the south of China,are situated not only in orogenic belts,but also in inner cratons,where climate is tropical-subtropical with clear arid and humid.The lateritic weathering crus...Red clay type gold deposits,located in the south of China,are situated not only in orogenic belts,but also in inner cratons,where climate is tropical-subtropical with clear arid and humid.The lateritic weathering crust often can be divided into five zones,including topsoil,siliceous duricrust zone,multi-color zone(or red clay zone in some deposits),pallid zone and saprolite zone from surface to the base rock,several of which are absent in some deposits.The base rocks are composed mainly of carbonate rocks with minor clastic rocks,intermediate-basic volcanic rocks and intermediate-acid and alkalic intrusions.The orebodies are mainly located in the multi-color zone with part of them in the pallid and saprolite zones.The ore sources include orebodies of Carlin-type gold deposits and porphyry gold deposits,as well as gold-rich base rocks.The red clay type gold deposits experienced early-stage endogenic gold mineralization and laterization during the Tertiary and Quaternary.The areas with endogenic gold deposits,especially Carlin-type gold deposits and porphyry gold deposits in karst depressions on the plateau,structual erosional platforms in the middle-lower mountains,and intermountain basins in southern China are well worth studying to trace red clay type gold deposits.展开更多
The shear strength parameters for geotechnical designs are obtained mainly from consolidated drained (CD) or consolidated undrained (CU) triaxial tests. However, during construction, the excess pore-air pressure g...The shear strength parameters for geotechnical designs are obtained mainly from consolidated drained (CD) or consolidated undrained (CU) triaxial tests. However, during construction, the excess pore-air pressure generally dissipates instantaneously while the excess pore-water pressure dissipates with time. This condition needs to be simulated in a constant water content (CW) triaxial test. The study on Yunnan red clay is carried out to investigate the soil-water characteristics and the shear strength characteristics under the constant water content condition. Osmotic technique is used to obtain the soil-water characteristic curve. A series of CW triaxial tests are conducted on statically compacted specimens. The experimental results show that the soil-water characteristic curve has a low air entry value of 7 kPa due to large pores in non-uniform pore size distribution, and a high residual value exceeding 10 MPa. In addition, the initial degree of saturation and net confining stress play an important role in affecting the shear characteristics under the constant water content condition. Finally, a new semi-empirical shear strength model in terms of degree of saturation is proposed and then applied to Yuunan red clay. Simulation result shows that the model is capable of capturing some key features of soils. The model can be used in whole engineering practice range, covering both unsaturmed and saturated soils.展开更多
There is fine and uniform clay with aluminous and ferrous cementation in the red clay found in Guigang, Guangxi. It has the characteristics of shrinkage outwardly, rigid upper but soft lower and well grown fissure. I...There is fine and uniform clay with aluminous and ferrous cementation in the red clay found in Guigang, Guangxi. It has the characteristics of shrinkage outwardly, rigid upper but soft lower and well grown fissure. In addition there are engineering characteristics such as high water content, low compactness and low compressibility, high strength and high contractility but slight expansibility. This paper discusses the red clay's engineering characteristics and its change regulation with depth by analyzing changes in the red clay's grain size composition, mineralogical constitution, and chemical composition.展开更多
Completely weathered phyllite(CWP)soil is a kind of special soil with high swell potential,while red clay is a special soil with high shrinkage.This means that these two kinds of special soils are usually not suitable...Completely weathered phyllite(CWP)soil is a kind of special soil with high swell potential,while red clay is a special soil with high shrinkage.This means that these two kinds of special soils are usually not suitable for direct use as subgrade fill.To reduce the swell index of the CWP soil and the shrinkage of red clay at the same time,it was proposed to blend the CWP soil with red clay to improve their basic characteristics.A series of swell index tests and dry-wet cycle tests of the blended soils have been carried out at varying blending ratios,compaction coefficients and moisture contents.The test results show that the free swell index of the blended soil decreases with the increase of red clay,moisture content and compaction coefficient,respectively.The fissure density of the blended soil first decreases and then increases with the blending ratio,with the lowest being zero when the blending ratio is ranging from 20%to 40%.Through particle microscopic analysis and elemental composition analysis,it is found that the neutralization effect,the dilution effect of swell minerals,and the partition effect of coarse particles play an important role in restraining expansion and shrinkage deformation of the blended soil.Based on the liquid limit requirement of Chinese Railway Design Code(TB 10001-2016),the optimal blending ratio of red clay has been proposed to be 50%.Compared with the CWP soil,the free load swell index of the blended soil is reduced by 45.0%and the fissure density is reduced by 99.3%compared with that of red clay.Therefore,it is feasible to improve the CWP soil by blending it with red clay at an optimal ratio of 50%by using the neutralization effect of the expansion of CWP and shrinkage of red clay.展开更多
The widely distributed red clay sediment underlying the Chinese Loess Plateau truly records the Neogene environmental evolution, and its genesis and development are intrinsically related to the uplift processes of the...The widely distributed red clay sediment underlying the Chinese Loess Plateau truly records the Neogene environmental evolution, and its genesis and development are intrinsically related to the uplift processes of the Tibetan Plateau and the evolution of East Asia monsoon system. In this paper, a detailed magnetostratigraphy of a loess-red clay section (107°13′E, 35°02′N) from the central Loess Plateau is reported. The loess-red clay sequence is composed of 175 m Quaternary loess-paleosol sequence and 128 m Neogene red clay sediments. Based on the correlation with the standard geomagnetic polarity time scale, the paleomagnetic results indicate that the age of Chaona red clay sequence extends to 08.1 Ma, which is the older red clay deposition in the central Chinese Loess Plateau. The commencement of red clay at -8.1 Ma may imply that the Ordos planation surface was broken by the movement of the Haiyuan-Liupanshan Faults, which was related to the uplift of the Tibetan Plateau induced by the collision of India Plate and Eurasian Plate. And the western part adjacent to the Tibetan Plateau was uplifted to form the embryo of the Liupan Shan (Mts.) and the eastern part was down-faulted to receive red clay deposition. We link this faulting to an initial uplift of the Tibetan Plateau. The undulating nature of the broken Ordos planation surface may explain the chronological differences and depth discrepancies among various cross-sections of red clay.展开更多
To explore an environmentally friendly improvement measure for red clay,the function and mechanism of xanthan gum biopolymer and polypropylene fibers on the strength properties of red clay were investigated by unconfi...To explore an environmentally friendly improvement measure for red clay,the function and mechanism of xanthan gum biopolymer and polypropylene fibers on the strength properties of red clay were investigated by unconfined compressive strength and scanning electron microscopy tests.The test results demonstrated that the contents and curing ages of xanthan gum had significant influences on the unconfined compressive strength of red clay.Compared with untreated soil,1.5%xanthan gum content was the optimal ratio in which the strength increment was between 41.52 kPa and 64.73 kPa.On the other hand,the strength of xanthan gum-treated red clay increased,whereas the ductility decreased with the increase in curing ages,indicating that the xanthan gum-treated red clay started to gradually consolidate after 3 days of curing and stiffness significantly improved between 7 and 28 days of curing.The results also showed that the synergistic consolidation effects of the xanthan gum–polypropylene fibers could not only effectively enhance the strength of red clay but also reduce the brittle failure phenomenon.The strengths of soil treated with 2.0%xanthan gum-polypropylene fibers were 1.9–2.41 and 1.12–1.47 times than that of red clay and 1.5%xanthan gum-treated clay,respectively.The results of study provide the related methods and experiences for the field of ecological soil treatment.展开更多
Increasing interest in recent years has focused on vermicular red clay(VRC) in southern China due to its controversial sedimentary environment and provenance. Grain size is a useful way to determine sedimentary enviro...Increasing interest in recent years has focused on vermicular red clay(VRC) in southern China due to its controversial sedimentary environment and provenance. Grain size is a useful way to determine sedimentary environment and provenance. Fisher Linear Discriminant Analysis(LDA) is a common and widely used method for multivariate statistical analysis. Based on a proper training sample set, the LDA can be used to discuss the sediment provenance. In this study, grain size data for 77 Malan loess samples and 41 floodplain deposit samples were used as a training sample set to deduce a Fisher linear discriminant function. Then, 299 VRC samples from 6 Quaternary red clay profiles were analyzed using the discriminant function. Grain size parameters and microscopic images of quartz grains separated from the VRC were evaluated in detail to determine the VRC sedimentary environment in south China. The results show that VRC profiles can be classified into two regions: the Chiang-nan Hilly Region and Wuyi Mountains Region. The VRC samples in the Chiang-nan Hilly Region originated from eolian dust deposits. This VRC is characterized by a higher content of fine particles(<20 μm) and lower average transport kinetic energy than loess in a C-M plot. The quartz grain sizes and microscope images of this VRC suggest that it could be a polyphyletic mixture of far-sourced and nearsourced eolian deposits. The far-sourced eolian deposits share similar provenance with Xiashu loess and were transported by the East Asian winter monsoon. The near-sourced eolian deposits were dust emitted from the adjacent floodplain. In the Wuyi Mountains Region, the rugged topography weakened the dustfall and strengthened the reconstructive effect of hydrodynamic forces during the Quaternary glacial periods. The VRC in this region was reworked strongly by water and retained typical hydraulic characteristics no matter the source.展开更多
Completely weathered phyllite(CWP)has the characteristics of difficult compaction,low shear strength after compaction and large settlement after construction.The traditional improvement method using a single agent of ...Completely weathered phyllite(CWP)has the characteristics of difficult compaction,low shear strength after compaction and large settlement after construction.The traditional improvement method using a single agent of red clay or cement for CWP satisfies the subgrade requirements for ordinary railway,but cannot meet the requirements of immediate strength and long-term post-construction settlement of high-speed railway at the same time.A series of experimental investigations were undertaken for the blended CWP soils,with three additives used.The first additive was red clay,the second was cement and the third was a combination of both red clay and cement at various portions.Results of consolidation test and shear strength test carried out for the treated CWP soils show that:1)The effect of cement on improving the compression modulus of CWP is much better than that of red clay;2)The settlement of an embankment of 10 m high formed by blended soil of CWP with 3%cement can be controlled within 15 mm,while the settlement will be 25.15 mm for the same embankment of blended soil of CWP with 40%red clay;3)The shear strength and ultimate bearing capacity of CWP improved by red clay are much better than those of 5%cement;4)The ultimate bearing capacity of CWP improved by 40%red clay is 3.42 times of that by 3%cement and 2.95 times by 5%cement.Furthermore,the bearing capacity of CWP when improved by red clay can meet railway subgrade requirements immediately after compaction,while cement improved CWP needs a curing time of 1 day or longer.This is an impediment to rapid construction process.The improvement mechanism of red clay is mainly filling effect and grading improvement effect,while the improvement mechanism of cement is mainly hardening reaction,which produces high strength material to cement.It is found that 40%red clay and 3%cement treated CWP,which is considered to be optimum,can meet the subgrade requirements of both immediate bearing capacity and long-term post-construction settlement for the high-speed railway.展开更多
Objective Aeolian sediments on the Chinese Loess Plateau contain some of the best continental archives of palaeoclimate change in the Late Cenozoic. The consensus that alternating MS in loess-paleosols in China was du...Objective Aeolian sediments on the Chinese Loess Plateau contain some of the best continental archives of palaeoclimate change in the Late Cenozoic. The consensus that alternating MS in loess-paleosols in China was due to the strengthening and weakening of the East Asian palaeomonsoon provides an excellent climate record when correlated with global ice volume. Significantly, new basal dates from the red clay underlying the loess-paleosol sequence indicate that wind-blown dust began to accumulate on the Chinese Loess Plateau at least 22 million years ago. There are differences of opinion,展开更多
In this study, a new composite ceramic material using a red clay matrix with different amount of clinker from the cement industry has been developed. The aim is to valorize some natural resources such as red clay and ...In this study, a new composite ceramic material using a red clay matrix with different amount of clinker from the cement industry has been developed. The aim is to valorize some natural resources such as red clay and sub-products from the cement industry as clinker in order to develop new materials for industrial and/or catalytic uses. Raw materials were grounded in order to reduce the particle size and obtain a homogeneous slip. The samples were mixed and compressed into pellets and undergo a heat treatment up to 1100℃. Geotechnical characterization has been carried out. Firing proprieties (shrinkage, water absorption, and mechanical resistance to the inflection) were measured. The composition of the ceramic material was investigated by X-ray diffraction, XRF, SEM and EDS methods. The incorporation of clinker in the ceramic composite material up to 50 wt% exhibits good behaviors (physical and mechanical proprieties) and can be used as a ceramic product.展开更多
The red clay in Chenzhou, Hunan province is mostly in unsaturated state. Simply applying the mechanical properties that derived from classic saturated soil mechanics often leads to slope failures in this region. In or...The red clay in Chenzhou, Hunan province is mostly in unsaturated state. Simply applying the mechanical properties that derived from classic saturated soil mechanics often leads to slope failures in this region. In order to study the shear strength characteristic of unsaturated red clay in Chenzhou and to explore a shear strength equation that can be easily applied in engineering practice, a series of triaxial tests of saturated and unsaturated red clay samples were performed using the regular triaxial testing apparatus. The testing results show that the peak strength of red clay drops slightly before the moisture content of 30% but decreases sharply after that. The friction angle of red clay under unsaturated state is basically equal to the effective friction angle under saturated state, while the cohesion of unsaturated red clay is far much bigger than that of saturated one, which indicates that the matric suction makes a great contribution to the cohesion. By fitting the testing results with appropriate curves, the relationships between total strength parameters and with moisture content were obtained. The total increases logarithmically before the moisture content of 35% then decreases linearly, while decreases cubically with increasing moisture content.展开更多
Reflectance spectroscopy is rapid,inexpensive,and non-destructive and can provide important information about the mineralogy of rocks and sediments.We measured the reflectance spectroscopy of Miocene red clay deposits...Reflectance spectroscopy is rapid,inexpensive,and non-destructive and can provide important information about the mineralogy of rocks and sediments.We measured the reflectance spectroscopy of Miocene red clay deposits on the northeastern margin of the Tibetan Plateau,with the aim of developing a rapid methodology for detecting paleoclimatic changes.We obtained visible/near-infrared(VNIR)and short-wave infrared(SWIR)spectroscopy data from the red clay in the Jianzha Basin,and analyzed their relationship with independent paleoclimatic records,including mineral contents and environmental magnetic parameters.The results show that the VNIR parameters,including D500,D900,R500,and R900(where D and R represent the depth and reflectance of the absorption peaks around 500 and 900 nm,respectively)are temperature-sensitive and correlated with the magnetic susceptibility,frequency-dependent magnetic susceptibility,and the marine δ^(18)O record.The results of frequency-domain analysis of the VNIR parameters show that they reflect climate change on orbital timescales.SWIR parameters,such as AS1400,D1400/D1900 and D1900(where AS represents the asymmetry of the absorption peaks around1400 nm),are correlated with the illite and montmorillonite content,and they are sensitive to the weathering intensity.The spectral parameters of the eolian red clay in the Jianzha Basin reflect regional climatic changes caused by the uplift of the Tibetan Plateau at~8.5 Ma and global climatic cooling at~7.2 Ma,and thus they are applicable as both regional and global paleoenvironmental indicators.展开更多
Establishment of a creep model is an important method to analyze the relationship between soil creep deformation and time,and the element model is widely used for studying soil creep.However,the element creep model is...Establishment of a creep model is an important method to analyze the relationship between soil creep deformation and time,and the element model is widely used for studying soil creep.However,the element creep model is employed for fitting saturated soil,and the mechanical element model is generally linear,which cannot well fit the nonlinear deformation of the soil with time in practice.The creep process of the soil is not only time-dependent,but also related to the deviatoric stress level.Therefore,the fractional calculus theory and a parameter n reflecting the effect of deviatoric stress level on the creep properties of the soil were introduced into the element model,and the fractional qBurgers creep model was established by using the fractional Koeller dashpot and Caputo fractional calculus.The proposed model was used to fit the triaxial test data of reticulated red clay under different net confining pressures and matric suctions by unsaturated triaxial apparatus.The proposed model can well describe the nonlinearity of unsaturated reticulated red clay,has memory and global correlation to the creep development process of unsaturated reticulated red clay,and has clear physical meaning.The functional relationships of the model parameters with the matric suction,net confining pressure and deviatoric stress level were deduced,so that the creep curves of unsaturated reticulated red clay can be obtained for any conditions,which is of great value for the study of unsaturated soils.展开更多
The present study investigated the incorporation of sugarcane bagasse ash(SCBA)in red ceramics,sintered in conventional oven and microwave oven,aiming to provide an alternative product,and a sintering process with hig...The present study investigated the incorporation of sugarcane bagasse ash(SCBA)in red ceramics,sintered in conventional oven and microwave oven,aiming to provide an alternative product,and a sintering process with higher energy efficiency in the production of red ceramics.The raw materials were characterized by XRF,XRD,thermogravimetry,particle size distribution and specific mass analyses.The specimens were shaped by extrusion in two different compositions,red clay and red clay with addition of 20%SCBA and sintered at temperatures from 700 to 1100℃.The conventional sintering occurred for 60 min with heating rate of 10℃/min.In the microwave oven the sintering occurred in a hybrid way,with heating rate of 50℃/min for 5,10 and 15 mins.After sintering the tests of linear shrinkage,compressive strength,water absorption,apparent porosity and apparent specific mass were performed.The addition of SCBA causes an increase in the values of water absorption and decreases the compressive strength and specific mass of the red ceramic.This occurs due to the creation of pores inside the material from the volatilization of organic matter present in the ashes.The sintering in microwave oven,when compared to conventional sintering,promotes an increase in the values of compressive strength and specific mass and reduction of water absorption values of ceramics,probably due to the refinement of the microstructure and the higher densification.Thus the incorporation of ashes can be partially compensated by a more efficient sintering.The use of SCBA and the sintering in microwave oven,showed to be viable alternatives in the development of a more sustainable and light material,promoting the management of waste,reduction in the consumption of raw materials and energy saving.展开更多
基金supported by the National Natural Science Foundation of China(Project No.41920104007 and 41772334).
文摘Red clay landslides are widely distributed worldwide,resulting in severe loss of life and property.Although rainfall-induced red clay slopes have received extensive attention,the role of cracks in the evolutionary process of red clay slopes and their connection to failure mechanisms is still poorly understood.A comprehensive approach integrating field investigation,laboratory tests,and numerical simulations was conducted to study the 168 red clay landslides in Xinshao County,China.The results show that red clay is prone to forming cracks at high moisture content due to its low swelling and high shrinkage properties.The failure mode of red clay slopes can be summarized in three stages:crack generation,slope excavation,and slope failure.Furthermore,the retrospective analysis and numerical simulations of the typical landslide in Guanchong indicated that intense rainfall primarily impacts the shallow layer of soil within approximately 0.5 m on the intact slope.However,cracks change the pattern of rainfall infiltration in the slope.Rainwater infiltrates rapidly through the preferential channels induced by the cracks rather than uniformly and slowly from the slope surface.This results in a significant increase in both the depth of infiltration and the saturated zone area of the cracked slope,reaching 3.8 m and 36.2 m^(2),respectively.Consequently,the factor of safety of the slope decreases by 13.4%compared to the intact slope,ultimately triggering landslides.This study can provide valuable insights into understanding the failure mechanisms of red clay slopes in China and other regions with similar geological settings.
基金EES acknowledges funding from a NERC Frontiers grant(NE/V010824/1)Leverhulme Trust research grant(RPG-2022-313).
文摘Over the past two decades,it has become increasingly apparent that early Mars may once have been warmer,wetter and more habitable for microbial life than it is today,which has spurred discussions about potential biosignatures that may be preserved in Martian sediments.An impediment to this line of research is the pervasive oxidation of Mars’surface due to photochemical oxidants that have likely destroyed remnants of organic matter.Here,we investigate whether nitrogen(N)transferred from biomass to phyllosilicate minerals during diagenesis can be preserved in oxidized mudrocks.We investigate two sequences of terrestrial Proterozoic red beds,namely the Sibley Group(1.4 Ga)in Canada and the Stoer Group(1.2 Ga)in Scotland,and we find enrichments in authigenic N in the range of several tens of ppm in both units.The highest concentrations(ca.100 ppm on average)are found in the most desiccated red beds of the Stoer Group,concurrent with enrichments in potassium(K).We discuss similarities and differences between the two sets of rocks with regards to salinity,pH,biological productivity and K-metasomatism,and we conclude that the ideal mechanism for the preservation of biogenic N in red beds may be in-situ release of ammonium from microbial mats into the clay substrate,possibly facilitated by early diagenetic,biologically induced illitization.Illite and smectite have been observed on Mars,and experiments suggest that Martian waters contained moderate amounts of dissolved K.Hence,it is conceivable that a similar K and N enrichment process could have occurred as to what we document for the Proterozoic,preserving evidence of life that may have survived to the modern day.
文摘This research aimed at testing the viability of using Sorghum Stalk Ash (SSA) as a partial replacement of lime in the stabilization of red clay soils for road subgrade construction. Red clay soils have been identified as highly expansive soils, which are affected by both climatic conditions and loading patterns. The consideration of both traffic loading patterns and climatic effects on these soils has been taken into account. A penetration test of 2.5 mm has been used on both pure red soils and stabilized soils at 10% and 15% partial replacement of lime with SSA and showed an improvement in the CBR of stabilized red clay soils up to 11.6%. Again, the PI of stabilized soils at 15% partial replacement of lime reduced up to 11.2%. The results obtained on both CBR and PI of these red clay soils are within the recommended values for the effective subgrade required for laying both permanent and flexible pavements. As a result, a recommendation of making use of SSA to lower the quantities of lime and its costs used in the stabilization of highly expansive soils have been tested through this research. However, further research on a more percentage partial replacement of lime to improve the PI of these soils to below 10% while keeping the CBR levels within the road construction regulations is welcomed.
基金Chinese Postdoctoral Fund and Natural Scienced Found of Shandong Province(No.93E0157)
文摘Coagulation of red tide organism cells with clays is discussed in theory and the effects of some factors on it are studied. A quantitative model is presented which describes how the coagulation varies with pH in solution. According to the model, within the pH-range between pHzpcb, and pHzpcb, VR is negative and the coagulation is strong and strongest at pH = (pHzpca + pHzpcb)/2. It is also demonstrated that when the diameter of clay particles is close to that of cells, the collision probability is low, resulting in weaker coagulation. The model results have been corroborated by experiments and so are scientific and theoretical bases for application.
文摘A thin layer of yellow-brown-colored earth was generally found on Quaternary red clay in Jiujiang,Jiangxi Province. A typical profile was established. Both particle size distribution and REE (rare earthelements) characteristics of the yellow-brown-colored earth of the profile fully suggested its aeolian origin andclose similarity to Naming Xiashu loess. The study also implied aeolian origin of the underlying Quaternaryred clap Compared with the red clay, the yellow- brown- colored earth was less weathered because of its lowercontent of free iron and higher mole ratios of SiO2/A12O3 and SiO2/(Fe2O3+A12O3 ) as well as its lessdeveloped chemical microtextures of quartz grains.In order to study the aged of the two deposits comparatively, the thermoluminescent dating method wasused. As a result, the bottom of the yellow-brown-colored esrth was dated to 6015 ka B. P. and the upperpart of the red clay 38854 ka B. P. It was suggested that the yellow- browm- colored earth was formed inthe Late Pleistocene and was probably the aeolian deposit of the Last Glacial, which corresponded with theMalan loess in the Loess Plateau of the northwestern part of China; while the underlying red clay was formedin the Middle Pleistocene.A "yellow cap" on Quaternary red clay in Jiujiang implied a great climatic and environmental varistionin the beginning of the Late Pleistocene in the southern pot of China, especially in the middle and lowerreaches of the Yangtze River. The eveal not only halted the rubification, once dominating the region, butalso produced a widespread covering of aeolian deposit, as only occurred in the cold and dry environment.
文摘The particle size distribution, heavy mineral constituents and rare earth elements (REE) characteristics of the Quaternary red clay of southern Anhui Province were studied to explore the origin of the clay. The results showed that the clay had some properties of areolian deposits, which could be compared with those of the loess in North China; and its chondrite normalized curves of REE were similar to those of the Xiashu loess, implying that they shared the same origin. It was concluded in combination with the results reported by other researchers that the Quaternary red clay of southern Anhui Province originated from aeolian deposits, and this could reveal the cycles of warm and cold climates in the area during the Quaternary period.
基金supported by the National Basic Research Program of China(973 Program)(No. 2009CB421008)111 Project(No.B07011)Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)
文摘Red clay type gold deposits,located in the south of China,are situated not only in orogenic belts,but also in inner cratons,where climate is tropical-subtropical with clear arid and humid.The lateritic weathering crust often can be divided into five zones,including topsoil,siliceous duricrust zone,multi-color zone(or red clay zone in some deposits),pallid zone and saprolite zone from surface to the base rock,several of which are absent in some deposits.The base rocks are composed mainly of carbonate rocks with minor clastic rocks,intermediate-basic volcanic rocks and intermediate-acid and alkalic intrusions.The orebodies are mainly located in the multi-color zone with part of them in the pallid and saprolite zones.The ore sources include orebodies of Carlin-type gold deposits and porphyry gold deposits,as well as gold-rich base rocks.The red clay type gold deposits experienced early-stage endogenic gold mineralization and laterization during the Tertiary and Quaternary.The areas with endogenic gold deposits,especially Carlin-type gold deposits and porphyry gold deposits in karst depressions on the plateau,structual erosional platforms in the middle-lower mountains,and intermountain basins in southern China are well worth studying to trace red clay type gold deposits.
基金Project(51068002) supported by the National Natural Science Foundation of ChinaProject(10-046-14-1) supported by Guangxi Key Laboratory of Geomechanics and Geotechnical Engineering,China
文摘The shear strength parameters for geotechnical designs are obtained mainly from consolidated drained (CD) or consolidated undrained (CU) triaxial tests. However, during construction, the excess pore-air pressure generally dissipates instantaneously while the excess pore-water pressure dissipates with time. This condition needs to be simulated in a constant water content (CW) triaxial test. The study on Yunnan red clay is carried out to investigate the soil-water characteristics and the shear strength characteristics under the constant water content condition. Osmotic technique is used to obtain the soil-water characteristic curve. A series of CW triaxial tests are conducted on statically compacted specimens. The experimental results show that the soil-water characteristic curve has a low air entry value of 7 kPa due to large pores in non-uniform pore size distribution, and a high residual value exceeding 10 MPa. In addition, the initial degree of saturation and net confining stress play an important role in affecting the shear characteristics under the constant water content condition. Finally, a new semi-empirical shear strength model in terms of degree of saturation is proposed and then applied to Yuunan red clay. Simulation result shows that the model is capable of capturing some key features of soils. The model can be used in whole engineering practice range, covering both unsaturmed and saturated soils.
文摘There is fine and uniform clay with aluminous and ferrous cementation in the red clay found in Guigang, Guangxi. It has the characteristics of shrinkage outwardly, rigid upper but soft lower and well grown fissure. In addition there are engineering characteristics such as high water content, low compactness and low compressibility, high strength and high contractility but slight expansibility. This paper discusses the red clay's engineering characteristics and its change regulation with depth by analyzing changes in the red clay's grain size composition, mineralogical constitution, and chemical composition.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.52068027,51668018,51768021).
文摘Completely weathered phyllite(CWP)soil is a kind of special soil with high swell potential,while red clay is a special soil with high shrinkage.This means that these two kinds of special soils are usually not suitable for direct use as subgrade fill.To reduce the swell index of the CWP soil and the shrinkage of red clay at the same time,it was proposed to blend the CWP soil with red clay to improve their basic characteristics.A series of swell index tests and dry-wet cycle tests of the blended soils have been carried out at varying blending ratios,compaction coefficients and moisture contents.The test results show that the free swell index of the blended soil decreases with the increase of red clay,moisture content and compaction coefficient,respectively.The fissure density of the blended soil first decreases and then increases with the blending ratio,with the lowest being zero when the blending ratio is ranging from 20%to 40%.Through particle microscopic analysis and elemental composition analysis,it is found that the neutralization effect,the dilution effect of swell minerals,and the partition effect of coarse particles play an important role in restraining expansion and shrinkage deformation of the blended soil.Based on the liquid limit requirement of Chinese Railway Design Code(TB 10001-2016),the optimal blending ratio of red clay has been proposed to be 50%.Compared with the CWP soil,the free load swell index of the blended soil is reduced by 45.0%and the fissure density is reduced by 99.3%compared with that of red clay.Therefore,it is feasible to improve the CWP soil by blending it with red clay at an optimal ratio of 50%by using the neutralization effect of the expansion of CWP and shrinkage of red clay.
基金supported by the National Natural Science Foundation of China(NO:40202019,90102017,40121303)National Basic Research Program of China(2004CB720202)China Postdoctoral Fund
文摘The widely distributed red clay sediment underlying the Chinese Loess Plateau truly records the Neogene environmental evolution, and its genesis and development are intrinsically related to the uplift processes of the Tibetan Plateau and the evolution of East Asia monsoon system. In this paper, a detailed magnetostratigraphy of a loess-red clay section (107°13′E, 35°02′N) from the central Loess Plateau is reported. The loess-red clay sequence is composed of 175 m Quaternary loess-paleosol sequence and 128 m Neogene red clay sediments. Based on the correlation with the standard geomagnetic polarity time scale, the paleomagnetic results indicate that the age of Chaona red clay sequence extends to 08.1 Ma, which is the older red clay deposition in the central Chinese Loess Plateau. The commencement of red clay at -8.1 Ma may imply that the Ordos planation surface was broken by the movement of the Haiyuan-Liupanshan Faults, which was related to the uplift of the Tibetan Plateau induced by the collision of India Plate and Eurasian Plate. And the western part adjacent to the Tibetan Plateau was uplifted to form the embryo of the Liupan Shan (Mts.) and the eastern part was down-faulted to receive red clay deposition. We link this faulting to an initial uplift of the Tibetan Plateau. The undulating nature of the broken Ordos planation surface may explain the chronological differences and depth discrepancies among various cross-sections of red clay.
基金This study was supported by the State Key Laboratory Project of China(Grant No.KF2020-12)the Yunnan Education Department Project of China(Grant Nos.2020Y0175 and 2020J0240).
文摘To explore an environmentally friendly improvement measure for red clay,the function and mechanism of xanthan gum biopolymer and polypropylene fibers on the strength properties of red clay were investigated by unconfined compressive strength and scanning electron microscopy tests.The test results demonstrated that the contents and curing ages of xanthan gum had significant influences on the unconfined compressive strength of red clay.Compared with untreated soil,1.5%xanthan gum content was the optimal ratio in which the strength increment was between 41.52 kPa and 64.73 kPa.On the other hand,the strength of xanthan gum-treated red clay increased,whereas the ductility decreased with the increase in curing ages,indicating that the xanthan gum-treated red clay started to gradually consolidate after 3 days of curing and stiffness significantly improved between 7 and 28 days of curing.The results also showed that the synergistic consolidation effects of the xanthan gum–polypropylene fibers could not only effectively enhance the strength of red clay but also reduce the brittle failure phenomenon.The strengths of soil treated with 2.0%xanthan gum-polypropylene fibers were 1.9–2.41 and 1.12–1.47 times than that of red clay and 1.5%xanthan gum-treated clay,respectively.The results of study provide the related methods and experiences for the field of ecological soil treatment.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41201008,41371032 and 41371206)
文摘Increasing interest in recent years has focused on vermicular red clay(VRC) in southern China due to its controversial sedimentary environment and provenance. Grain size is a useful way to determine sedimentary environment and provenance. Fisher Linear Discriminant Analysis(LDA) is a common and widely used method for multivariate statistical analysis. Based on a proper training sample set, the LDA can be used to discuss the sediment provenance. In this study, grain size data for 77 Malan loess samples and 41 floodplain deposit samples were used as a training sample set to deduce a Fisher linear discriminant function. Then, 299 VRC samples from 6 Quaternary red clay profiles were analyzed using the discriminant function. Grain size parameters and microscopic images of quartz grains separated from the VRC were evaluated in detail to determine the VRC sedimentary environment in south China. The results show that VRC profiles can be classified into two regions: the Chiang-nan Hilly Region and Wuyi Mountains Region. The VRC samples in the Chiang-nan Hilly Region originated from eolian dust deposits. This VRC is characterized by a higher content of fine particles(<20 μm) and lower average transport kinetic energy than loess in a C-M plot. The quartz grain sizes and microscope images of this VRC suggest that it could be a polyphyletic mixture of far-sourced and nearsourced eolian deposits. The far-sourced eolian deposits share similar provenance with Xiashu loess and were transported by the East Asian winter monsoon. The near-sourced eolian deposits were dust emitted from the adjacent floodplain. In the Wuyi Mountains Region, the rugged topography weakened the dustfall and strengthened the reconstructive effect of hydrodynamic forces during the Quaternary glacial periods. The VRC in this region was reworked strongly by water and retained typical hydraulic characteristics no matter the source.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.52068027,51668018,51768021).
文摘Completely weathered phyllite(CWP)has the characteristics of difficult compaction,low shear strength after compaction and large settlement after construction.The traditional improvement method using a single agent of red clay or cement for CWP satisfies the subgrade requirements for ordinary railway,but cannot meet the requirements of immediate strength and long-term post-construction settlement of high-speed railway at the same time.A series of experimental investigations were undertaken for the blended CWP soils,with three additives used.The first additive was red clay,the second was cement and the third was a combination of both red clay and cement at various portions.Results of consolidation test and shear strength test carried out for the treated CWP soils show that:1)The effect of cement on improving the compression modulus of CWP is much better than that of red clay;2)The settlement of an embankment of 10 m high formed by blended soil of CWP with 3%cement can be controlled within 15 mm,while the settlement will be 25.15 mm for the same embankment of blended soil of CWP with 40%red clay;3)The shear strength and ultimate bearing capacity of CWP improved by red clay are much better than those of 5%cement;4)The ultimate bearing capacity of CWP improved by 40%red clay is 3.42 times of that by 3%cement and 2.95 times by 5%cement.Furthermore,the bearing capacity of CWP when improved by red clay can meet railway subgrade requirements immediately after compaction,while cement improved CWP needs a curing time of 1 day or longer.This is an impediment to rapid construction process.The improvement mechanism of red clay is mainly filling effect and grading improvement effect,while the improvement mechanism of cement is mainly hardening reaction,which produces high strength material to cement.It is found that 40%red clay and 3%cement treated CWP,which is considered to be optimum,can meet the subgrade requirements of both immediate bearing capacity and long-term post-construction settlement for the high-speed railway.
基金co-supported by the National Natural Science Foundation of China(grants No.41421002, 41372037,41372036,41372020 and 41002052)
文摘Objective Aeolian sediments on the Chinese Loess Plateau contain some of the best continental archives of palaeoclimate change in the Late Cenozoic. The consensus that alternating MS in loess-paleosols in China was due to the strengthening and weakening of the East Asian palaeomonsoon provides an excellent climate record when correlated with global ice volume. Significantly, new basal dates from the red clay underlying the loess-paleosol sequence indicate that wind-blown dust began to accumulate on the Chinese Loess Plateau at least 22 million years ago. There are differences of opinion,
文摘In this study, a new composite ceramic material using a red clay matrix with different amount of clinker from the cement industry has been developed. The aim is to valorize some natural resources such as red clay and sub-products from the cement industry as clinker in order to develop new materials for industrial and/or catalytic uses. Raw materials were grounded in order to reduce the particle size and obtain a homogeneous slip. The samples were mixed and compressed into pellets and undergo a heat treatment up to 1100℃. Geotechnical characterization has been carried out. Firing proprieties (shrinkage, water absorption, and mechanical resistance to the inflection) were measured. The composition of the ceramic material was investigated by X-ray diffraction, XRF, SEM and EDS methods. The incorporation of clinker in the ceramic composite material up to 50 wt% exhibits good behaviors (physical and mechanical proprieties) and can be used as a ceramic product.
文摘The red clay in Chenzhou, Hunan province is mostly in unsaturated state. Simply applying the mechanical properties that derived from classic saturated soil mechanics often leads to slope failures in this region. In order to study the shear strength characteristic of unsaturated red clay in Chenzhou and to explore a shear strength equation that can be easily applied in engineering practice, a series of triaxial tests of saturated and unsaturated red clay samples were performed using the regular triaxial testing apparatus. The testing results show that the peak strength of red clay drops slightly before the moisture content of 30% but decreases sharply after that. The friction angle of red clay under unsaturated state is basically equal to the effective friction angle under saturated state, while the cohesion of unsaturated red clay is far much bigger than that of saturated one, which indicates that the matric suction makes a great contribution to the cohesion. By fitting the testing results with appropriate curves, the relationships between total strength parameters and with moisture content were obtained. The total increases logarithmically before the moisture content of 35% then decreases linearly, while decreases cubically with increasing moisture content.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)Program(Grant Nos.2019QZKK0704&2019QZKK0101)the National Natural Science Foundation of China(Grant Nos.42272221&41772167)+1 种基金the State Key Laboratory of Loess and Quaternary Geology(Grant No.SKLLQG1905)the Central University Research Foundation,Chang’an University(Grant Nos.300102272901)。
文摘Reflectance spectroscopy is rapid,inexpensive,and non-destructive and can provide important information about the mineralogy of rocks and sediments.We measured the reflectance spectroscopy of Miocene red clay deposits on the northeastern margin of the Tibetan Plateau,with the aim of developing a rapid methodology for detecting paleoclimatic changes.We obtained visible/near-infrared(VNIR)and short-wave infrared(SWIR)spectroscopy data from the red clay in the Jianzha Basin,and analyzed their relationship with independent paleoclimatic records,including mineral contents and environmental magnetic parameters.The results show that the VNIR parameters,including D500,D900,R500,and R900(where D and R represent the depth and reflectance of the absorption peaks around 500 and 900 nm,respectively)are temperature-sensitive and correlated with the magnetic susceptibility,frequency-dependent magnetic susceptibility,and the marine δ^(18)O record.The results of frequency-domain analysis of the VNIR parameters show that they reflect climate change on orbital timescales.SWIR parameters,such as AS1400,D1400/D1900 and D1900(where AS represents the asymmetry of the absorption peaks around1400 nm),are correlated with the illite and montmorillonite content,and they are sensitive to the weathering intensity.The spectral parameters of the eolian red clay in the Jianzha Basin reflect regional climatic changes caused by the uplift of the Tibetan Plateau at~8.5 Ma and global climatic cooling at~7.2 Ma,and thus they are applicable as both regional and global paleoenvironmental indicators.
基金supported by the National Science Fund for Distinguished Young Scholars (Grant No.52025085)the National Key Research and Development Program of China (Grant No.2021YFB2600900)the Open Fund of Key Laboratory of Special Environment Road Engineering of Hunan Province,China (Changsha University of Science and Technology) (Grant No.kfj230606).
文摘Establishment of a creep model is an important method to analyze the relationship between soil creep deformation and time,and the element model is widely used for studying soil creep.However,the element creep model is employed for fitting saturated soil,and the mechanical element model is generally linear,which cannot well fit the nonlinear deformation of the soil with time in practice.The creep process of the soil is not only time-dependent,but also related to the deviatoric stress level.Therefore,the fractional calculus theory and a parameter n reflecting the effect of deviatoric stress level on the creep properties of the soil were introduced into the element model,and the fractional qBurgers creep model was established by using the fractional Koeller dashpot and Caputo fractional calculus.The proposed model was used to fit the triaxial test data of reticulated red clay under different net confining pressures and matric suctions by unsaturated triaxial apparatus.The proposed model can well describe the nonlinearity of unsaturated reticulated red clay,has memory and global correlation to the creep development process of unsaturated reticulated red clay,and has clear physical meaning.The functional relationships of the model parameters with the matric suction,net confining pressure and deviatoric stress level were deduced,so that the creep curves of unsaturated reticulated red clay can be obtained for any conditions,which is of great value for the study of unsaturated soils.
文摘The present study investigated the incorporation of sugarcane bagasse ash(SCBA)in red ceramics,sintered in conventional oven and microwave oven,aiming to provide an alternative product,and a sintering process with higher energy efficiency in the production of red ceramics.The raw materials were characterized by XRF,XRD,thermogravimetry,particle size distribution and specific mass analyses.The specimens were shaped by extrusion in two different compositions,red clay and red clay with addition of 20%SCBA and sintered at temperatures from 700 to 1100℃.The conventional sintering occurred for 60 min with heating rate of 10℃/min.In the microwave oven the sintering occurred in a hybrid way,with heating rate of 50℃/min for 5,10 and 15 mins.After sintering the tests of linear shrinkage,compressive strength,water absorption,apparent porosity and apparent specific mass were performed.The addition of SCBA causes an increase in the values of water absorption and decreases the compressive strength and specific mass of the red ceramic.This occurs due to the creation of pores inside the material from the volatilization of organic matter present in the ashes.The sintering in microwave oven,when compared to conventional sintering,promotes an increase in the values of compressive strength and specific mass and reduction of water absorption values of ceramics,probably due to the refinement of the microstructure and the higher densification.Thus the incorporation of ashes can be partially compensated by a more efficient sintering.The use of SCBA and the sintering in microwave oven,showed to be viable alternatives in the development of a more sustainable and light material,promoting the management of waste,reduction in the consumption of raw materials and energy saving.